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Information for Participants

Conference Site

Conference Site: Si-Yuan Building, Academy of Mathemat-

ics and Systems Science (AMSS), Chinese

Academy of Sciences (CAS)

Address: No. 55, Zhong Guan Cun East Road, Hai Dian

District, Beijing, CHINA

Reception & On-site Registration

Reception and on-site registration will take place simultane-

ously in two venues on September 25:

• September 25, 9:00-18:00, lobby of Jade Palace Hotel.

• September 25, 9:00-18:00, lobby of Institute of Computa-

tional Mathematics and Scientific/Engineering Computing

(ICMSEC), AMSS, CAS.

If you are accommodated at Jade Palace, please register at

the hotel; otherwise, please register at ICMSEC, AMSS, CAS. If

you want to register at other time, please contact our conference

secretary Ms. Ji-ping Wu.

Currency

Chinese currency is RMB. The current rate is about 6.38 RMB

for 1 US dollar. The exchange of foreign currency can be done at
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the airport or the conference hotel (Jade Palace Hotel). Please keep

the receipt of the exchange so that you can change back to your

own currency if you have RMB left before you leave China.

From Jade Palace to AMSS

For participants accommodated at Jade Palace: in each morn-

ing of September 26-28, Dr. Xin Liu and Miss Cong Sun will guide

you to the conference site at AMSS. You will set off punctually at

8:00 a.m., from the lobby of Jade Palace. Please wait in the lobby

in advance. There will be only one guidance each morning. If you

miss it, you will have to go to the conference site by yourself.

Contact Information

If you need any help, please contact the conference secretaries:

• Ms. Ji-ping Wu: +86-136-9106-6084 (in Chinese).

• Mr. Zaikun Zhang: +86-159-0152-1357.
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Conference Schedule

September 26, Monday

08:30-09:10 Opening Ceremony

(Lecture Hall, Si-Yuan Building)

08:30-08:50 Welcome Address

08:50-09:10 Group Photo

09:10-09:30 Coffee Break

09:30-12:00 Invited Talks I1

Chair: Wenyu Sun (Lecture Hall, Si-Yuan Building)

09:30-10:20 Tamás Terlaky, Cone Linear Optimization (CLO): from LO,

SOCO and SDO towards mixed integer CLO

10:20-11:10 Mikio Kubo, Trend in Supply Chain Optimization and Human-

itarian Logistics

11:10-12:00 Xiaoling Sun, Modeling and Algorithmic Challenges from Fi-

nancial Optimization

12:00-13:30 Lunch (4th Floor, Wu-Ke Restaurant)

13:30-15:10 Invited Talks I2

Chair: Tetsuzo Tanino (Lecture Hall, Si-Yuan Building)

13:30-14:20 Soon-Yi Wu, On finite convergence of an explicit exchange

method for convex semi-definite programming problems with second-

order cone constraints

14:20-15:10 Zaiwen Wen, Optimization with orthogonality constraints and

its applications

15:10-15:30 Coffee Break

15:30-18:30 Contributed Talks C1 & C2
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C1, Chair: Mikio Kubo (Lecture Hall, Si-Yuan Building)

15:30-16:00 Shinji Mizuno, Klee-Minty’s LP and Upper Bounds for Dantzig’s

Simplex Method

16:00-16:30 Xin Liu, Limited Memory Block Krylov Subspace Optimiza-

tion for Computing Dominant Singular Value Decompositions

(Changed)

16:30-17:00 Chao Zhang, A New Active Set Method For Nonnegative

Matrix Factorization

17:00-17:30 Jiming Peng, Sparse Solutions to Classes of Quadratic

Programming Problems

17:30-18:00 Wei Bian, Smoothing Neural Network for Constrained

Non-Lipschitz Optimization with Applications

18:00-18:30 Yanfang Zhang, Moreau-Yosida regularization for stochas-

tic linear variational inequalities

C2, Chair: Yu-Hong Dai (Room 712, Si-Yuan Building)

15:30-16:00 Rui Diao, A New Family of Matrix Completion Quasi-Newton

Methods (Changed)

16:00-16:30 Mituhiro Fukuda, High performance software package for SDP:

SDPA version 7

16:30-17:00 Wanyou Cheng, An Adaptive Gradient Algorithm for Large-

scale Nonlinear Bound Constrained Optimization

17:00-17:30 Cong Sun, A Hybrid Algorithm for Power Maximization In-

terference Alignment Problem of MIMO Channels

17:30-18:00 Zaikun Zhang, Sobolev Seminorm of Quadratic Functions with

Applications to Derivative-Free Optimization

18:00-18:30 Zhengyong Zhou, A discretization method for nonlinear semi-

infinite programming based on the flatten aggregate constraint

homotopy method for solving the discretized problem

18:40 Dinner (Xiang Lin Tian Xia Restaurant)

20:00 SJOM Steering Committee Meeting

(Room 305, Institute of Computational Mathematics and

Scientific/Engineering Computing)
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September 27, Tuesday

08:30-10:10 Invited Talks I3

Chair: Masao Fukushima (Lecture Hall, Si-Yuan Build-

ing)

08:30-09:20 Xiaojun Chen, Expected Residual Minimization for Stochas-

tic Variational Inequalities

09:20-10:10 Marc Teboulle, First Order Algorithms for Well Structured

Optimization Problems

10:10-10:30 Coffee Break

10:30-12:00 Contributed Talks C3 & C4

C3, Chair: Xiaojun Chen (Lecture Hall, Si-Yuan Build-

ing)

10:30-11:00 Bingsheng He, on the O(1/t) convergence rate of the alter-

nating direction methods for convex optimization and mono-

tone variational inequalities

11:00-11:30 Keiji Tatsumi, A sufficient condition for chaos in a steep-

est decent system with sinusoidal perturbation for global op-

timization

11:30-12:00 Bo Jiang, An improved model for truck dispatching in open

pit mine

C4, Chair: Satoru Iwata (Room 712, Si-Yuan Building)

10:30-11:00 Shunsuke Hayashi, Semi-infinite program with infinitely many

conic constraints: optimality condition and algorithms

11:00-11:30 Ryan Loxton, Optimal Control Problems with Stopping Con-

straints

11:30-12:00 Lishun Zeng, On the Separation in 2-Period Double Round

Robin Tournaments with Minimum Breaks

12:00-13:30 Lunch (4th Floor, Wu-Ke Restaurant)

13:30-15:10 Invited Talks I4

Chair: Naihua Xiu (Lecture Hall, Si-Yuan Building)

13:30-14:20 Hiroshi Yamashita, Primal-dual Interior Point Methods for

Nonlinear SDP - Local and Global Analysis
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14:20-15:10 Yu-Hong Dai, Joint Power and Admission Control for a SISO

Interference Channel: Complexity Analysis, Algorithm Design,

and Distributed Implementation

15:10-15:30 Coffee Break

15:30-17:00 Contributed Talks C5 & C6

C5, Chair: Hiroshi Yamashita (Lecture Hall, Si-Yuan Build-

ing)

15:30-16:00 Naihua Xiu, S-goodness: Low-Rank Matrix Recovery from

Sparse Signal Recovery

16:00-16:30 Hidefumi Kawasaki, An application of a discrete fixed point

theorem for contraction mappings to a game in expansive form

16:30-17:00 Lingchen Kong, Exact Low-rank Matrix Recovery via Non-

convex Mp-Minimization

C6, Chair: Jiawang Nie (Room 712, Si-Yuan Building)

15:30-16:00 Qun Lin, Optimal Fleet Sizing via Dynamic Programming and

Golden Section Search

16:00-16:30 Yasushi Narushima, A smoothing conjugate gradient method

for solving nonsmooth systems of equations

16:30-17:00 Lei Guo, M-Stationarity and Stability Analysis for Mathemat-

ical Programs with Complementarity Constraints

17:10 Dinner (3rd Floor, Wu-Ke Restaurant)
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September 28, Wednesday

08:30-10:10 Invited Talks I5

Chair: Jie Sun (Lecture Hall, Si-Yuan Building)

08:30-09:20 Yin Zhang, Some Recent Advances in Alternating Direction

Methods: Practice and Theory

09:20-10:10 Satoru Iwata, Submodular Optimization and Approximation

Algorithms

10:10-10:30 Coffee Break

10:30-12:00 Contributed Talks C7 & C8

C7, Chair: Bingsheng He (Lecture Hall, Si-Yuan Building)

10:30-11:00 Hiroshi Yabe, Conjugate gradient methods based on secant

conditions that generate descent search directions for uncon-

strained optimization

11:00-11:30 Xiao Wang, An Augmented Lagrangian Trust Region Algo-

rithm for Equality Constrained Optimization

11:30-12:00 Congpei An, Regularized least squares approximation over the

unit sphere using spherical designs

C8, Chair: Zaiwen Wen (Room 712, Si-Yuan Building)

10:30-11:00 Ying Lu, Plan Postponement Strategy: A Definition and Re-

search Model

11:00-11:30 Min Li, Inexact Solution of NLP Subproblems in MINLP

11:30-12:00 Atsushi Kato, Global and superlinear convergence of inex-

act sequential quadratically constrained quadratic programming

method for convex programming

12:00-13:30 Lunch (4th Floor, Wu-Ke Restaurant)

13:30-15:10 Invited Talks I6

Chair: Soon-Yi Wu(Lecture Hall, Si-Yuan Building)

13:30-14:20 Lúıs Nunes Vicente, Sparse and Smoothing Methods for Non-

linear Optimization Without Derivatives

14:20-15:10 Ye Lu, Optimal Policy for an Inventory System with Convex

Variable Cost and a Fixed Cost

15:10-15:30 Coffee Break
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15:30-16:20 Invited Talks I7

Chair: Yin Zhang (Lecture Hall, Si-Yuan Building)

15:30-16:20 Jiawang Nie, Jacobian SDP Relaxation for Polynomial Opti-

mization

16:20-16:30 Closing Ceremony

(Lecture Hall, Si-Yuan Building)

16:50 Bus to Conference Banquet

(Conference Banquet at Da Zhai Men Restaurant)
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Expected Residual Minimization for Stochastic
Variational Inequalities

Xiaojun Chen

Department of Applied Mathematics

The Hong Kong Polytechnic University

Hong Kong

Email: maxjchen@polyu.edu.hk

The stochastic variational inequality (SVI) has been used widely in engineering and eco-

nomics, as an effective mathematical model for a number of equilibrium problems involving

uncertain data. We present an expected residual minimization (ERM) formulation for a class

of SVI, including the complementarity problem as a special case. The objective of the ERM-

formulation is Lipschitz continuous and semismooth which helps us guarantee the existence of

a solution and convergence of approximation methods. Moreover, this minimization problem

is convex for linear SVI if the expected matrix is positive semi-definite. We propose a globally

convergent (a.s.) smoothing sample average approximation (SSAA) method to minimize the

residual function. We show that the ERM problem and its SSAA problems have minimizers in

a compact set and any cluster point of minimizers and stationary points of the SSAA problems

is a minimizer and a stationary point of the ERM problem (a.s.). We illustrate the ERM and

SSAA by examples from traffic equilibrium assignment problems.
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Joint Power and Admission Control for a SISO
Interference Channel: Complexity Analysis, Algorithm

Design, and Distributed Implementation

Yu-Hong Dai

Institute of Computational Mathemtaics and Scientific/Engineering Computing

Chinese Academy of Sciences

Beijing 100190, China

Email: dyh@lsec.cc.ac.cn

Power control, aiming at providing each user in the interference channel with the prescribed

quality of service (QoS) target, has been extensively studied. However, when there are too many

co-channel users, it is not possible to simultaneously satisfy all users’ QoS requirements due

to mutual interferences and individual power limits. Therefore, it is necessary to bring up

the admission control, and makes sense to maximize the number of admitted users at their

desired QoS demands. It is shown that the joint power and admission control problem is

strongly NP-hard and there even does not exist a polynomial-time approximation algorithm for

it; hence, convex approximation heuristics approaches are considered. We first reformulate the

problem as a sparse `0-minimization problem and then relax it to a linear programming. Next,

two easy-checking necessary conditions that all users in the network can be simultaneously

supported are derived. Based on above analysis, a new linear programming deflation (NLPD)

algorithm is proposed, which minimizes a weighted summation of the total excess transmission

power and the total real transmission power in each step. The distributed implementation

of NLPD is also developed since the network often suffers a large communication overhead

for the implementation of a centralized algorithm. The projected alternate Barzilai-Borwein

(PABB) algorithm with the continuation technique is proposed to carry out the power control.

The proposed algorithm not only allows each node to locally update its power with limited

information exchange, but also preserves the high computational efficiency of the centralized

algorithm. Numerical simulations show the proposed centralized and distributed algorithms

outperform state-of-the-arts.

This work is jointed with Ya-feng Liu and Zhiquan Luo.
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Submodular Optimization and Approximation Algorithms

Satoru Iwata

Research Institute for Mathematical Sciences (RIMS)

Kyoto University

Kyoto 606-8502, Japan

Email: iwata@kurims.kyoto-u.ac.jp

Submodular functions are discrete analogues of convex functions. Examples include cut

capacity functions, matroid rank functions, and entropy functions. Submodular functions can be

minimized in polynomial time, which provides a fairly general framework of efficiently solvable

combinatorial optimization problems. In contrast, the maximization problems are NP-hard and

several approximation algorithms have been developed so far.

In this talk, I will review the above results in submodular optimization and present re-

cent approximation algorithms for combinatorial optimization problems described in terms of

submodular functions.
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Trend in Supply Chain Optimization and Humanitarian
Logistics

Mikio Kubo

Department of Information Engineering and Logistics

Tokyo University of Marine Science and Technology

12-5 Echujima Koutou-ku, Tokyo 135-0083, Japan

Email: kubo@kaiyodai.ac.jp

In this talk, we survey the supply chain (SC) optimization. We introduce three decision

levels of the SC, show the classification of inventories, and then discuss several basic opti-

mization models such as logistics network design, inventory, scheduling, lot-sizing, and vehicle

routing models. We also review recent progress in humanitarian logistics and supply chain risk

management.
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Optimal Policy for an Inventory System with Convex
Variable Cost and a Fixed Cost

Ye Lu

City University of Hong Kong

Hong Kong

Email: yelu22@cityu.edu.hk

We study the optimal policy for a periodic-review inventory system where there is a fixed

cost and the variable ordering cost is defined by a piece-wise linear convex function. By in-

troducing the concept of strong (K,c,q)-convexity, we characterize the structure of the optimal

policy. Based on this structure, we propose a well performed heuristics algorithm to solve this

problem.
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Jacobian SDP Relaxation for Polynomial Optimization

Jiawang Nie

Mathematics Department

University of California, San Diego (UCSD)

9500 Gilman Drive, La Jolla, CA 92093, USA

Email: njw@math.ucsd.edu

Consider the global optimization problem of minimizing a polynomial function subject to

polynomial equalities and/or inequalities. Jacobian SDP Relaxation is the first method that

can solve this problem globally and exactly by using semidefinite programming. This solves

an open problem in the field of polynomial optimization. Its basic idea is to use the minors of

Jacobian matrix of the given polynomials, add new redundant polynomial equations about the

minors to the constraints, and then apply the hierarchy of Lasserre’s semidefinite programming

relaxations. The main result is that this new semidefinite programming relaxation will be

exact for a sufficiently high (but finite) order, that is, the global minimum of the polynomial

optimization can be computed by solving a semidefinite programming problem.
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Modeling and Algorithmic Challenges from Financial
Optimization

Xiaoling Sun

School of Management

Fudan University

670 Guoshun Road, Shanghai 200433, China

Email: xls@fudan.edu.cn

In this talk, we discuss some modeling and algorithmic challenges from financial optimiza-

tion.

We consider portfolio selection models with three types of hard constraints arising from

real-world trading practice:

(i) cardinality constraint;

(ii) probabilistic constraints;

(iii) marginal risk constraints.

These portfolio selection models are of NP-hard optimization problems. We propose some

new reformulations and convex relaxation techniques.

Preliminary numerical results will be also reported.
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First Order Algorithms for Well Structured Optimization
Problems

Marc Teboulle

School of Mathematical Sciences

Tel Aviv University

Ramat Aviv, Tel Aviv 69978, Israel

Email: teboulle@post.tau.ac.il

Many fundamental scientific and engineering problems of recent interest arising in signal

recovery, image processing, compressive sensing, machine learning and other fields can be for-

mulated as well structured optimization problems, but which are typically very large scale,

and often nonsmooth and nonconvex. This leads to challenging difficulties for their solutions,

precluding the use of most well established sophisticated algorithms, such as interior point.

Elementary first order methods then often remain our best alternative to tackle such problems.

This talk surveys recent results on the design and analysis of gradient-based algorithms

for some generic optimization models arising in a wide variety of applications, highlighting the

ways in which problem structures can be beneficially exploited to devise simple and efficient

algorithms.
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Cone Linear Optimization (CLO):
from LO, SOCO and SDO towards mixed integer CLO

Tamás Terlaky

Harold S. Mohler Laboratory

Lehigh University

200 West Packer Avenue, Bethlehem, PA 18015-1582, USA

Email: terlaky@lehigh.edu

Cone Linear Optimization (CLO) has been the subject of intense study in the past two

decades. Interior Point Methods (IPMs) provide polynomial time algorithms in theory, and

powerful software tools in computational practice. The applications of Second-Order Conic

(SOCO) and Semi-Definite Optimization (SDO) expanded rapidly. The first part of this talk

reviews model formulation, IPM fundamentals, available software and some applications of CLO

problems.

The use of integer variables naturally occur in CLO problems too, thus the need for

dedicated mixed integer CLO algorithms and software is evident. The second part of this

talk gives some insight of how to design disjunctive conic cuts for mixed integer CLO problems.

Biography:

Tamás Terlaky, George N. & Soteria Kledaras ’87 Endowed Chair; Prof. Chair, Department

of Industrial and Systems Engineering, Lehigh University; P. C., Rossin College of Engineering

and Applied Science Lehigh University.

Degrees: M.Sc. Mathematics (1979), Ph.D. Operations Research (1981), Eötvös Univer-

sity, Budapest), CSc (1985) and DSc (2005), Hungarian Academy of Sciences. He has previously

taught at Eötvös University; TU Delft; McMaster University, where he was the founding Di-

rector of the School of Computational Engineering and Science. He has published four books,

edited fifteen books and journal special issues, published over 170 papers. Topics include

theoretical and algorithmic foundations of optimization, such as criss-cross and interior point

methods, worst case examples of the central path, nuclear reactor core reloading optimization,

oil refinery and VLSI design optimization, robust RTT optimization.

Terlaky is founding editor-in-chief of Optimization and Engineering; associate editor of

eight journals; served as conference chair; distinguished invited speaker all over the World;

member, former chair, officer of numerous professional organizations; Chair of the Continuous

Optimization Steering Committee of MOS; Fellow of the Fields Institute, and received the

MITACS Mentorship Award for his distinguished graduate student supervision. His research

interests include high-performance optimization methods, algorithms and software, and solving

optimization problems in engineering sciences.
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Sparse and Smoothing Methods for Nonlinear
Optimization Without Derivatives

Lúıs Nunes Vicente

Department of Mathematics

University of Coimbra

300-454 Coimbra, Portugal

Email: lnv@mat.uc.pt

In this talk we have the ambitious goal of showing some recent developments on two

different aspects of derivative-free optimization (DFO), linked together by the usage of the l1

norm.

In many application problems in DFO, one has little or no correlation between problem

variables, and such (sparsity) structure is unknown in advance. We will describe how to compute

quadratic interpolants by l1-minimization when the Hessian is sparse, and show that when

using random sample sets significantly less than O(n2) points are required for a similar order

of accuracy.

On the other hand, we will apply smoothing techniques to DFO problems, having in mind

the goal of bounding the worst-case complexity or cost of DFO methods (in particular direct

search) for non-smooth objective functions. Tractable smoothing functions in DFO require the

knowledge of the non-smooth component, one relevant example being precisely the composition

of the l1 norm with a smooth operator.
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Optimization with orthogonality constraints and its
applications

Zaiwen Wen

Department of Mathematics and Institute of Natural Sciences

Shanghai Jiao tong University

Shanghai, China

Email: zw2109@sjtu.edu.cn

Minimization with respect to a matrix X subject to orthogonality constraints X>X =

I, or with respect to a vector x subject to constraint ‖x‖2 = 1, has wide applications in

polynomial optimization, combinatorial optimization, eigenvalue problems, the total energy

minimization in electronic structure calculation, subspace tracking, sparse principal component

analysis, p-harmonic flow, and matrix rank minimization, etc. These problems are generally

difficult because the constraints are not only non-convex but also numerically expensive to

preserve during iterations. To deal with these difficulties, we propose a fast algorithm based

on an inexpensive constraint-preserving updating scheme and curvilinear search procedures.

Numerical results on a wide collection of problems show that the proposed algorithm is very

promising.

This is a joint work with Wotao Yin at Rice University.
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On finite convergence of an explicit exchange method for
convex semi-infinite programming problems with

second-order cone constraints

Soon-Yi Wu

Department of Mathematics, National Cheng Kung University, Tainan, Taiwan;

National Center for Theoretical Sciences, Taiwan

Email: soonyi@mail.ncku.edu.tw

We consider the convex semi-infinite programming problem with second-order cone con-

straints (for short, SOCCSIP). We propose an explicit exchange method for solving SOCCSIP,

and prove that the algorithm terminates in a finite number of iterations under some mild con-

ditions. In the analysis, the complementarity slackness condition with respect to second-order

cones plays an important role. To deal with such complementarity conditions, we utilize the

spectral factorization techniques in Euclidean Jordan algebra. We also show that the obtained

output is an approximate optimum of SOCCSIP. We also report some numerical results involv-

ing the application to the robust optimization in the classical convex semi-infinite programming.

Key words. semi-infinite programming, finite termination, explicit method, second-order cone
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Primal-dual Interior Point Methods for Nonlinear SDP -
Local and Global Analysis

Hiroshi Yamashita

Mathematical Systems, Inc., Japan

10F Four Seasons Bldg., 2-4-3 Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan

Email: hy@msi.co.jp

In this talk, various algorithmic aspects of primal-dual interior point methods for solving

nonconvex nonlinear semidefinite programming problems will be described. It will be shown

that it is possible to extend usual primal-dual algorithms for NLP to NLSDP. In order to

have globally convergent practical algorithms, we propose a new primal-dual merit function.

Both line search method and trust region method will be described along with their numerical

behaviors. Also rate of convergence of unscaled (AHO) and scaled (HRVW/KSH/M and NT)

method will be discussed. It is possible to have local and superlinear convergence of these

methods.
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Some Recent Advances in Alternating Direction Methods:
Practice and Theory

Yin Zhang

Department of Computational and Applied Mathematics

Rice University

Houston, Texas 77005, USA

Email: yzhang@rice.edu

The classic Augmented Lagrangian Alternating Direction Method (ALADM or simply

ADM) has recently found great utilities in solving convex, separable optimization problems

arising from signal/image processing and sparse optimization. In this talk, we briefly introduce

the classic ADM approach, give some recent examples of its applications including extensions

to solving some non-convex and non-separable problems. We then present new local and global

convergence results that extend the classic ADM convergence theory in several aspects.
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Regularized Least squares approximations on the sphere
using spherical designs

Congpei An

Department of Applied Mathematics

The Hong Kong Polytechnic University

Hong Kong

Email: andbach@163.com

We consider polynomial approximation on the unit sphere S2 = {(x, y, z) ∈ R3 : x2 +

y2 + z2 = 1} by a class of regularized discrete least squares methods, with novel choices for

the regularization operator and the point sets of the discretization. We allow different kinds

of rotationally invariant regularization operators, including the zero operator (in which case

the approximation includes interpolation, quasi-interpolation and hyperinterpolation); powers

of the negative Laplace-Beltrami operator (which can be suitable when there are data errors);

and regularization operator that yield filtered polynomial approximations. As node sets we

use spherical t-designs, which are point sets on the sphere which when used as equal-weight

quadrature rules integrate all spherical polynomials up to degree t exactly. More precisely,

we use well conditioned spherical t-designs [1] obtained in a previous paper by maximizing the

determinants of the Gram matrices subject to the spherical design constraint. For t ≥ 2L and an

approximating polynomial of degree L it turns out that there is no linear algebra problem to be

solved, and the approximation in some cases recovers known polynomial approximation schemes,

including interpolation, hyperinterpolation and filtered hyperinterpolation. For t ∈ [L, 2L) the

linear system needs to be solved numerically. Finally, we give numerical examples to illustrate

the theoretical results, and show that well chosen regularization operator and well conditioned

spherical t-designs can provide good polynomial approximation on the sphere, with or without

the presence of data errors.

This is a join work with Xiaojun Chen, Ian H. Sloan and Robert S. Womersley.

References:

[1] C. An, X, Chen, I. H. Sloan and R. S. Womersley, Well conditioned spherical designs for

integration and interpolation on the two-sphere, SIAM J. Numer. Anal., 48 (2010), pp. 2135-2157.

[2] C. An, X. Chen, I. H. Sloan, and R. S. Womersley, Regularized spherical least-squares approx-

imations on the sphere using spherical designs. submitted to SIAM J. Numer. Anal. June 2011.
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Smoothing Neural Network for Constrained
Non-Lipschitz Optimization with Applications

Wei Bian∗ and Xiaojun Chen†

∗Department of Mathematics

Harbin Institute of Technology

Harbin, China

Email: bianweilvse520@163.com

†Department of Applied Mathematics

The Hong Kong Polytechnic University

Hong Kong

Email: maxjchen@polyu.edu.hk

In this paper, a smoothing neural network is proposed for a class of constrained non-Lipschitz

optimization problems, where the objective function is the sum of a nonsmooth, nonconvex function

and a non-Lipschitz function, and the feasible set is a closed convex subset of Rn. Using the smoothing

approximate techniques, the proposed neural network is modeled by a differential equation, which can

be implemented easily. Under the level bounded condition on the objective function in the feasible

set, we prove the global existence and uniform boundedness of the solutions of the smoothing neural

network with any initial point in the feasible set. The uniqueness of the solution of the smoothing

neural network is provided under the Lipschitz property of smoothing functions. We show that any

accumulation point of the solutions of the smoothing neural network is a stationary point of the

optimization problem. Numerical results including image restoration, blind source separation, variable

selection and minimizing condition number are presented to illustrate the theoretical results and show

the efficiency of the smoothing neural network. Comparisons with some existing algorithms show the

advantages of the smoothing neural network.

Keywords Smoothing neural network, non-Lipschitz optimization, stationary point, image and signal

restoration, variable selection.
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An Adaptive Gradient Algorithm for Large-scale
Nonlinear Bound Constrained Optimization1

Wanyou Cheng∗ and Erbao-Cao†

∗College of Computer

Dongguan University of Technology

Dongguan 523000, China

Email: chengwanyou421@yahoo.com.cn

†College of Mathematics and Econometrics

Hunan University

Changsha 410082, China

Email: dhli@hnu.cn

In this paper, an adaptive gradient algorithm based on an active identification technique for box

constrained optimization is developed. The algorithm consists of a nonmonotone gradient projection

step, a conjugate gradient step and a rule for branching between the two steps. Under appropriate con-

ditions, we establish the global convergence of the method. Moreover, we also show that the algorithm

eventually reduces to the conjugate gradient algorithm for unconstrained optimization without restarts

for a nondegenerate stationary point. Numerical experiments are presented using box constrained

problems in the CUTEr test problem libraries.

Keywords: bound constrained optimization, PRP method, global convergence

1Supported by the NSF of China via grant 1101087 and by the Key Project of Chinese Ministry of Education

309023.

21

mailto:chengwanyou421@yahoo.com.cn
mailto:dhli@hnu.cn


A New Family of Matrix Completion Quasi-Newton
Methods

Rui Diao

Institute of Computational Mathemtaics and Scientific/Engineering Computing

Chinese Academy of Sciences

Beijing 100190, China

Email: diarui@lsec.cc.ac.cn

Based on the idea of maximum determinant positive definite matrix completion, Yamashita (2008)

proposed a sparse quasi-Newton update, called MCQN, for unconstrained optimization problems with

sparse Hessian structures. Such MCQN update keeps the sparsity structure of the Hessian while

relaxing the secant condition. Cheng et al. proposed a method NMCQN, in which the quasi-Newton

matrix satisfies the secant condition, but does not have the same sparsity structure as the Hessian in

general. By introducing a new patameter, we proposed a new family of quasi-Newton methods base

on MCQN and NMCQN. A local and superlinear convergence property holds. Our numerical results

demonstrate the usefulness of the new parameter.
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High performance software package for SDP:
SDPA version 7

Mituhiro Fukuda

Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

Tokyo, Japan

Email: mituhiro@is.titech.ac.jp

SDPA (SemiDefinite Programming Algorithm, version 7) is a high-performance software to solve

large-scale Semidefinite Programs (SDPs). The new features of this version include a new storage data

structure, which accelerates its performance on multiple block matrices; sparse Cholesky factorization to

solve the key linear system of equations; and multi-thread computing. We give extensive computational

results which compare the well-known codes to solve SDPs and corroborates with the advantages of

SDPA.

The multi-precision versions of SDPA: SDPA-DD (double-double precision arithmetic), SDPA-

QD (quad-double precision arithmetic), and SDPA-GMP (arbitrarily precision arithmetic) replace the

standard double precision arithmetic calculations of SDPA by its corresponding one. This is done

using MPACK, developed by Maho Nakata, instead of the usual LAPACK library required by SDPA.

These software packages requires an enormous computational time if compared with SDPA. However,

they are the unique alternative to solve SDPs which are ill-posed numerically such as problems from

computational geometry, graph theory [1], quantum chemistry [2], etc.

This is a joint work with Makoto Yamashita1, Katsuki Fujisawa2, Kazuhide Nakata3, Maho

Nakata4, Kazuhiro Kobayashi5, and Kazushige Goto6.
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M-Stationarity and Stability Analysis for Mathematical
Programs with Complementarity Constraints

Lei Guo and Guihua Lin

School of Mathematical Sciences

Dalian University of Technology

Dalian 116024, China

Email: {lei guo opt, lin g h}@yahoo.com.cn

This paper studies the M-stationarity (Mordukhovich stationarity) and its stability for mathe-

matical programs with complementarity constraints (MPCC). We first show that a local minimizer

of an MPCC must be M-stationary under suitable constraint qualification. Then we focus on the

stability of the M-stationarity. We show that, under the no nonzero abnormal multiplier constraint

qualification (NNAMCQ), both the multiplier mapping and M-stationary solution mapping are locally

bounded and upper semicontinuous with respect to the perturbation parameter. Furthermore, under

the NNAMCQ and the second-order sufficient condition (SOSC), the local optimal solution mapping

and the M-stationary solution mapping are both continuous at 0 with respect to the perturbation

parameter. We also show that the M-stationary pair mapping is calm under suitable conditions.

Keywords: MPCC, MPCC-stationarity, MPCC-constraint qualification, calmness, stability.

24

mailto:lei_guo_opt@yahoo.com.cn, lin_g_h@yahoo.com.cn


Semi-infinite program with infinitely many conic
constraints: optimality condition and algorithms

Takayuki Okuno, Shunsuke Hayashi, and Masao Fukushima

Department of Applied Mathematics and Physics

Graduate School of Informatics, Kyoto University

Kyoto 606-8501, Japan

Email: {t okuno, shunhaya, fuku}@amp.i.kyoto-u.ac.jp

We consider the following optimization problem with an infinite number of conic constraints:

Minimize f(x)

subject to A(t)>x− b(t) ∈ C for all t ∈ T,

(1)

where f : Rn → R is a continuously differentiable convex function, A : T → Rn×m and b : T → Rm

are continuous functions, T ⊂ R` is a given compact set, and C ⊂ Rm is a closed convex cone with

nonempty interior. We call this problem the semi-infinite conic program, SICP for short. We assume

that SICP (1) has a nonempty solution set.

When m = 1 and C = R+ := {z ∈ R | z ≥ 0}, SICP (1) reduces to the classical semi-infinite pro-

gram (SIP) which has a wide application in engineering [3, 4]. A more general choice for C is the sym-

metric cone such as the second-order cone Km :=
˘
(z1, z2, . . . , zm)> ∈ Rm | z1 ≥ ‖(z2, z3, . . . , zm)>‖2

¯
and the semi-definite cone Sm

+ := {Z ∈ Rm×m | Z = Z>, Z � 0}. We note that our algorithm needs to

solve a sequence of subproblems in which T is replaced by a finite subset {t1, t2, . . . , tr} ⊆ T . To such a

subproblem, we can apply an existing algorithm such as the interior-point method and the smoothing

Newton method [1, 2].

The main purpose of the paper is two-fold. First, we study the Karush-Kuhn-Tucker (KKT)

conditions for SICP. Although the original KKT conditions for SICP could be described by means of

integration and Borel measure, we show that they can be represented by a finite number of elements

in T under the Robinson constraint qualification. Second, we provide two algorithms for solving

SICP (1). Since any closed convex cone can be represented as an intersection of finitely or infinitely

many halfspaces, we may reformulate (1) as a classical SIP with infinitely many linear inequality

constraints, and solve it by using existing SIP algorithms [3, 4]. However, such a reformulation

approach brings more difficulties since the dimension of the index set may become much larger than

that of the original SICP (1).1 Therefore, it is more reasonable to deal with the cones directly without

losing their special structures.

The two algorithms proposed in this study are based on the exchange method, which solves a

sequence of subproblems with finitely many conic constraints. The first algorithm is an explicit exchange

method, of which we show global convergence under the strict convexity of the objective function. The

second algorithm is a regularized explicit exchange method, which is a hybrid of the explicit exchange

method and the regularization method. With the help of regularization, global convergence of the

algorithm can be established without the strict convexity assumption.

1In the case where C = Km, since Km = {z ∈ Rm | z>s ≥ 0, ∀s ∈ S}, where S := {(1, s̄)> ∈ Rm | ‖s̄‖ = 1},
SICP (1) can be reformulated as the SIP: min f(x) s.t. s>(A(t)>x − b(t)) ≥ 0 for all (s, t) ∈ S × T . The

dimension of S × T is then equal to m + dim T − 1, where dim T denotes the dimension of T .
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On the O(1/t) convergence rate of the alternating
direction methods for convex optimization and monotone

variational inequalities

Bingsheng He

Department of Mathematics

Nanjing University

Nanjing 210093, China

Email: hebma@nju.edu.cn

The alternating directions method (ADM) has found many new applications and its empirical

efficiency has been well illustrated in various fields. However, the estimate of ADM’s convergence rate

remains a theoretical challenge for a few decades. In this talk, we show that the convergence rate of

ADM is O(1/t) in the context of convex programming. The complexity statement is true also for the

ADM with relaxation factor in the update form of the multiplier as suggested by Glowinski. We give

numerical results to indicate that taking a suitable relaxation factor will accelerate the convergence.
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An improved model for truck dispatching in open pit mine

Bo Jiang
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Chinese Academy of Sciences

Beijing 100190, China

Email: jiangbo@lsec.cc.ac.cn

In this talk, we will give a brief review of truck dispatching problem in open pit mine and propose

an improved two-stage mathematical model. At the first stage of the model, we solve a truck flow

programming problem with a suitable objective function as a whole guide for real dispatching. At

the second stage, we use different dispatching strategies corresponding to the truck flow programming.

Besides, in order to give a better guide, we can also solve the truck flow programming for several times.

Preliminary numerical tests are also presented.
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Global and superlinear convergence of inexact sequential
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We consider the following convex programming problem:8><>: minimize f(x)

subject to gi(x) ≤ 0 (i = 1, · · · , m)

where f : Rn → R and gi : Rn → R are convex functions. The sequential quadratic programming

(SQP) method is one of effective numerical methods for nonlinear programming problems. Since the

SQP method lacked its second order information, the Maratos effect occurs. This phenomenon is that

the unit step size is not necessarily accepted and prevents the SQP method from attaining superlinear

convergence. The SQCQP (sequential quadratically constrained quadratic programming) method is the

method which overcomes the Maratos effect. The SQCQP method for convex programming generates a

search direction dk by solving the following quadratically constrained quadratic programming (QCQP)

subproblem at kth iteration:8><>:
minimize ∇f(xk)T d +

1

2
dT Bkd

subject to gi(xk) +∇gi(xk)T d +
1

2
dT∇2gi(xk)d ≤ 0 (i = 1, · · · , m)

where Bk is a kth approximate Hessian matrix of the objective function. Generally, this subproblem

is not solvable. We deal with the feasible QCQP subproblem given by Fukushima, Luo and Tseng [1]

and propose the method whose subproblem is inexactly solved. Furthermore, we show the convergence

property of our method.

Keyword; Convex programming, Global convergence, Superlinear convergence, Sequential quadrati-

cally constrained quadratic programming method.
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In the game theory, fixed point theorems are useful to show the existence of Nash equilibrium.

Since they are strong tools with continuous variables, it is expected that discrete fixed point theorems

also useful to guarantee the existence of pure-strategy Nash equilibrium.

In this talk, we first review discrete fixed point theorems such as Robert’s and Richard-Shih-Dong’s

fixed point theorems. Next, we present our discrete fixed point theorem for contraction mappings from

the product set of integer intervals into itself, which is an extension of Robert’s fixed point theorem.

Finally, we apply our fixed point theorem to game theory. We show that our fixed point theorem works

well in a game in expansive form with perfect information.
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The low-rank matrix recovery (LMR) arises in many fields such as signal and image processing,

statistics, computer vision, system identification and control, and it is NP-hard. It is known that

under some restricted isometry property (RIP) conditions we can obtain the exact low-rank matrix

solution by solving its convex relaxation, the nuclear norm minimization. In this paper, we consider the

nonconvex relaxations by introducing Mp-norm (0 < p < 1) of a matrix and establish RIP conditions

for exact LMR via Mp-minimization. Specifically, letting A be a linear transformation from Rm×n

into Rs and r be the rank of recovered matrix X ∈ Rm×n, and if A satisfies the RIP condition
√

2δmax{r+ 3
2 k,2k} +

`
k
2r

´ 1
p
− 1

2 δ2r+k <
`

k
2r

´ 1
p
− 1

2 for a given positive integer k ≤ m − r, then r-rank

matrix can be exactly recovered. In particular, we not only obtain a uniform bound on restricted

isometry constant δ4r <
√

2 − 1 for any p ∈ (0, 1] for LMR via Mp-minimization, but also obtain the

one δ2r <
√

2− 1 for any p ∈ (0, 1] for sparse signal recovery via lp-minimization.
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Inexact Solution of NLP Subproblems in MINLP

Min Li

Department of Mathematics
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3001-454 Coimbra, Portugal

Email: limin@mat.uc.pt

In the context of convex mixed-integer nonlinear programming (MINLP), we investigate how the

outer approximation method and the generalized Benders decomposition method are affected when the

respective NLP subproblems are solved inexactly. We show that the cuts in the corresponding master

problems can be changed to incorporate the inexact residuals, still rendering equivalence and finiteness

in the limit case. Some numerical results will be presented to illustrate the behavior of the methods

under NLP subproblem inexactness.

Co-author: L. N. Vicente, CMUC, Department of Mathematics, University of Coimbra, 3001-454

Coimbra, Portugal (lnv@mat.uc.pt).
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Optimal Fleet Sizing via Dynamic Programming and
Golden Section Search

Qun Lin
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Curtin University
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Email: Q.Lin@curtin.edu.au

In this talk, we will consider the problem of determining the optimal composition of a heteroge-

neous vehicle fleet consisting of multiple vehicle types, given that future vehicle requirements follow

a known probability distribution. The problem is to choose the number of vehicles of each type to

purchase so that the total expected cost of operating the fleet is minimized. The total expected cost is

the sum of fixed and variable costs associated with the fleet, as well as hiring costs that are incurred

when vehicle requirements exceed fleet capacity. We develop a novel algorithm, which combines dy-

namic programming and the golden section method, for solving this fleet sizing problem. Numerical

simulations indicate that our algorithm is highly efficient, and is capable of solving large-scale problems

involving hundreds of vehicle types.
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Limited Memory Block Krylov Subspace Optimization for
Computing Dominant Singular Value Decompositions

Xin Liu
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In many data-intensive applications, the use of principal component analysis (PCA) and other

related techniques is ubiquitous for dimension reduction, data mining or other transformational pur-

poses. Such transformations often require efficiently, reliably and accurately computing dominant

singular value decompositions (SVDs) of large unstructured matrices. In this paper, we propose and

study a subspace optimization technique to significantly accelerate the classic simultaneous iteration

method. We analyze the convergence of the proposed algorithm, and numerically compare it with sev-

eral state-of-the-art SVD solvers under the MATLAB environment. Extensive computational results

show that on a wide range of large unstructured matrices, the algorithm provides improved efficiency

or robustness over existing algorithms.
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Optimal Control Problems with Stopping Constraints
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In this talk, we will consider an optimal control problem in which the governing dynamic system

terminates once a stopping constraint is satisfied. The most interesting aspect of this problem is that

the terminal time is not fixed, but is instead a function of the control. Thus, conventional optimal

control techniques are not applicable. We develop a novel approximation scheme that results in a

finite-dimensional approximation of the optimal control problem. We then show that this approximate

problem can be solved effectively using an exact penalty method. Finally, we conclude the talk with a

discussion of some important convergence results.
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Plan Postponement Strategy: A Definition and Research
Model

Ying Lu
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This paper was motivated by a practical situation in the auto industry. Nowadays some automobile

manufacturers made their production schedule step by step as time proceeded to waiting for more

demand information available so that the decisions about the products could be more accurately. We

name this method as plan postponement strategy. By classifying the production differentiations into

two levels-basic specification and secondary specification, we analyze the plan postponement strategy

problem as two-level hierarchical structure, which is characterized by families and items . The concept

of family represents a set of items that have the same basic specification components, analogous to the

car-lines in auto industry ,while item is a specific unit in each family which is determined by the second

specification components in a certain family. We first formulate this problem as a stochastic mixed

integer programming problem. Then, we solve it by means of an algorithm that involves generalized

linear programming to obtain the approximate solution. We illustrate the procedure using a numerical

example. The computational results demonstrate the effectiveness of the production plan postponement

in a practical setting .Finally, a number of managerial insights are provided.
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Klee-Minty’s LP and Upper Bounds for Dantzig’s
Simplex Method

Tomonari Kitahara and Shinji Mizuno
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Kitahara and Mizuno (2010) get two upper bounds for the number of different basic feasible

solutions generated by Dantzig’s simplex method. The size of the bounds highly depends on the ratio

between the maximum and the minimum values of all the positive elements of basic feasible solutions.

We show that the ratio for a simple variant of Klee-Minty’s LP is equal to the number of iterations by

Dantzig’s simplex method for solving it. This implies that it is impossible to get a better upper bound

than the ratio.

Keywords: Simplex method, Linear programming, Basic feasible solutions, Klee-Minty’s LP
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A smoothing conjugate gradient method for solving
nonsmooth systems of equations

Yasushi Narushima
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We treat numerical methods for solving nonsmooth systems of equations:

F (x) = 0,

where a function F : Rn → Rm (n ≤ m) is continuous but not necessarily differentiable. Many

problems in real world are reduced to nonsmooth systems of equations and hence many researchers

study numerical methods for solving them. As numerical methods for solving such systems, Newton

like methods are known as efficient numerical methods. However, these methods cannot be applied to

large-scale problems, because they must keep matrices.

On the other hand, the nonlinear conjugate gradient method is known as an efficient numerical

method for solving large-scale unconstrained optimization problems.

In this talk, we propose a smoothing method which is based on the nonlinear conjugate gradient

method and does not use any matrices for solving nonsmooth systems of equations. In addition, we

prove the global convergence property of the proposed method under standard assumptions.

Keyword; Nonsmooth systems of equations, smoothing conjugate gradient method, global convergence
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Sparse Solutions to Classes of Quadratic Programming
Problems

Jiming Peng
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Sparse solutions to classes of optimization problems has been a major concern for optimization

problems arising from many disciplines such as image processing and portfolio selection. It has been

observed for long that for numerous classes of quadratic optimization problems such as the standard

quadratic programming problem (StQP), though theoretically intractable, there always exist sparse

optimal solutions for instances from many real-world applications. In this project, we present a new

theoretical framework to interpret why there always exist sparse optimal or approximate solutions

to classes of intractable and non-convex QPs and derive precise probabilistic characterization of the

sparsity at the sparsest optimal or approximate solutions to the underlying QPs.

This talk is based on joint works with Xin Chen and Shuzhong Zhang, supported by AFOSR and

NSF.
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A Hybrid Algorithm for Power Maximization Interference
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Cong Sun
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In this talk, we would like to solve proper precoding and decoding matrices in a K-user MIMO

interference channel of wireless communication system. A model to maximize the desired signal power

with interference alignment conditions as its constraints. The contraints are added to the objective

function by the Courant penalty function technique, to form a nonlinear matrix optimization problem

with only matrix orthogonal constraints. A hybrid algorithm is proposed to solve the problem. First,

we propose a new algorithm to iterate with Householder transformation to keep orthogonality. From

any initial point, this algorithm helps to find points nearby the local optimal solution. Then alternating

minimization algorithm is used to iterate from this point to the local optimum. Analysis shows that

the proposed hybrid algorithm has lower computational complexity than the existed algorithm and

simulations validate such conclusions.
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A sufficient condition for chaos in a steepest decent
system with sinusoidal perturbation for global

optimization

Keiji Tatsumi and Tetsuzo Tanino
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Recently, global optimization methods using chaotic dynamics have been investigated. In those

methods, it is significant what kind of chaotic dynamical system is selected. We already proposed a new

dynamical system which generates a chaotic sequence by the steepest descent method for minimizing an

objective function with additional sinusoidal perturbation terms. We showed that the proposed system

has good properties to search for solutions extensively without being trapped at undesirable local

minima, and that it works more effectively for solving some benchmark global optimization problems

than the existing one in numerical experiments. However, the system has some parameters which

should be appropriately selected for an efficient search.

Therefore, in this paper, we theoretically derive the sufficient condition of the parameter values

under which the proposed system is chaotic. In addition, we verify the sufficient condition by calculating

the Lyapunov exponents of the proposed one and analyze its bifurcation structure through numerical

experiments.

Keywords: metaheurisitcs, chaotic dynamics, global optimization.
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An Augmented Lagrangian Trust Region Algorithm for
Equality Constrained Optimization
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In this paper, we present a new trust region method for equality constrained optimization. The

method is based on the augmented Lagrangian function. New strategies to update the penalty parame-

ter and the Lagrangian multiplier are proposed. Under very mild conditions, global convergence of the

algorithm is proved. Preliminary numerical experience for problems with equalities from the CUTEr

collection is also reported. The numerical performance indicate that for problems with equality con-

straints the new method is effective and competitive with the famous algorithm LANCELOT.
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S-goodness: Low-Rank Matrix Recovery from Sparse
Signal Recovery
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The low-rank matrix recovery (LMR) is a rank minimization problem subject to linear equality

constraints, and it arises in many fields such as signal and image processing, statistics, computer vision,

system identification and control. This class of optimization problems is NP -hard and a popular

approach replaces the rank function with the nuclear norm of the matrix variable.

In this paper, we extend the concept of s-goodness for a sensing matrix in sparse signal recovery

(proposed by Juditsky and Nemirovski [Math Program, 2011]) to linear transformations in LMR. Then,

we give characterizations of s-goodness in the context of LMR. Using the two characteristic s-goodness

constants, γs and γ̂s, of a linear transformation, not only do we derive necessary and sufficient conditions

for a linear transformation to be s-good, but also provide sufficient conditions for exact and stable s-

rank matrix recovery via the nuclear norm minimization under mild assumptions. Moreover, we give

computable upper bounds for one of the s-goodness characteristics which leads to verifiable sufficient

conditions for exact low-rank matrix recovery.
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Conjugate gradient methods based on secant conditions
that generate descent search directions for unconstrained

optimization
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In this talk, we deal with conjugate gradient methods for solving unconstrained optimization

problems:

min
x∈Rn

f(x),

where f : Rn → R is continuously differentiable and its gradient is available. Conjugate gradient

methods have been paid attention to, because they can be directly applied to large-scale unconstrained

optimization problems. In order to incorporate second order information of the objective function

into conjugate gradient methods, Dai and Liao [1] proposed a conjugate gradient method based on

the secant condition. However, their method does not necessarily generate a descent search direction.

On the other hand, Hager and Zhang [2] proposed another conjugate gradient method which always

generates a descent search direction.

Combining Dai-Liao’s idea and Hager-Zhang’s idea, we propose conjugate gradient methods based

on secant conditions that generate descent search directions. In addition, we establish global conver-

gence properties of the proposed methods.

Keywords: Unconstrained optimization, conjugate gradient method, descent search direction, secant

condition, global convergence.
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On the Separation in 2-Period Double Round Robin
Tournaments with Minimum Breaks
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This paper considers the separation in 2-period double round robin tournaments (2P-DRRTs)

with minimum breaks. The separation is a lower bound on the number of slots between the two games

with the same opponents. None of the known schemes provides 2P-DRRTs with minimum breaks

and a positive separation. We first propose a new scheme to generate 2-separation 2P-DRRTs with

minimum breaks, based on single round robin tournaments (SRRTs) with minimum breaks which have

the last break in the third slot from the end. We experimentally show that such SRRTs exist for 8

to 76 teams. Secondly, we consider maximizing the separation in general 2P-DRRTs with minimum

breaks by integer programming and constraint programming, respectively. Both a direct formulation

and a “first-break, then-schedule” decomposition approach are presented and compared. We obtain

the maximum separation for up to 12 teams. Furthermore, we consider the application with place

constraints to show the flexibility and efficiency of scheduling 2P-DRRTs with minimum breaks and a

positive separation.
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A New Active Set Method For Nonnegative Matrix
Factorization

Chao Zhang
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Nonnegative matrix factorization (NMF) has been proved powerful to a variety of data analysis

applications, which seeks a lower rank approximation of a given nonnegative matrix by two nonnegative

factors of lower dimensions. NMF can be reformulated as an ordinary vector-variable minimization

problem with nonnegative bound constraints. Techniques leading faster algorithms for vector-variable

minimization can be extended to NMF. In this paper, we propose a new matrix-based active set method

for NMF, which allows fast algorithms for bound constrained problem and exhibits strong convergent

result. Numerical experiments on several data set demonstrate the good performance of the proposed

method.
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Moreau-Yosida regularization for stochastic linear
variational inequalities

Yanfang Zhang
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We apply the Moreau-Yosida regularization to a convex expected residual minimization (ERM)

formulation for a class of stochastic linear variational inequalities. To have the convexity of sample

average approximations (SAA) of the ERM formulation, we adopt the Tikhonov regularization. We

show that any cluster point of minimizers of the Moreau-Yosida regularization of the SAA of the ERM

formulation with the Tikhonov regularization is a minimizer of the ERM formulation as the sample size

N → ∞ and the Tikhonov regularization parameter ε → 0. Moreover, we prove the minimizer is the

least l2-norm solution of the ERM formulation. We also prove the semismoothness of the gradient of the

Moreau-Yosida regularization of the SAA of the ERM formulation with the Tikhonov regularization.

What is more, we estimate the values of uncertainty quantities in both the distribution form and

moments to get a robust decision for our stochastic linear variational inequalities.
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In this talk, we inspect the classical H1 Sobolev seminorm of quadratic functions over balls of

Rn. We express the seminorm explicitly in terms of the coefficients of the quadratic function under

consideration. The seminorm gives some new insights into the least-norm interpolation widely used in

derivative-free optimization. It shows the geometrical/analytical essence of the least-norm interpolation

and explains why it is successful. We finally present some numerical results to show that H1 seminorm

is helpful to the model selection of derivative-free optimization.
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A discretization method for nonlinear semi-infinite
programming based on the flatten aggregate constraint
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In this paper, a discretization method for nonlinear semi-infinite programming is developed. After

discreteing the problem into a sequence of finite-dimensional problems, a globally convergent method,

the flatten aggregate constraint homotopy method, is used to solve the discretized problem using a

adaptive scheme. Since only a smooth inequality constraint is used, the dimension of the homotopy

map keeps invariable for different discretization mesh-sizes. Moreover, only discretized constraint func-

tions that are nearly active at the current point are needed to evaluate their gradients and Hessians.

Hence, the computational costs of the functional-value and the Jacobian of the homotopy map, and

consequentially the discretized flatten aggregate constraint homotopy method is less expensive than

common methods. Under some common conditions, the global convergence of the proposed method,

which means the global convergence of the homotopy method for the discretized problem and the

convergence of the solution of the discretized problem to the solution of the semi-infinite problem

depending on the discretization mesh-size, is proven. Preliminary numerical results show that the

proposed method is efficient.
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Sightseeing Information

Great Wall1

The Great Wall (Chinese: �p�¢; pinyin: Wàn Ľı Cháng Chéng; literally,

Ten-Thousand-Mile-Long Wall) of China is a series of stone and earthen fortifi-

cations in northern China, built originally to protect the northern borders of the

Chinese Empire against intrusions by various nomadic groups. Several walls have

been built since the 5th century BC that are referred to collectively as the Great

Wall, which has been rebuilt and maintained from the 5th century BC through

the 16th century. One of the most famous is the wall built between 220-206 BC

by the first Emperor of China, Qin Shi Huang. Little of that wall remains; the

majority of the existing wall was built during the Ming Dynasty.

The Great Wall stretches from Shanhaiguan in the east, to Lop Lake in the

west, along an arc that roughly delineates the southern edge of Inner Mongolia.

The most comprehensive archaeological survey, using advanced technologies, has

concluded that the entire Great Wall, with all of its branches, stretches for 8,851.8

km (5,500.3 mi). This is made up of 6,259.6 km (3,889.5 mi) sections of actual

wall, 359.7 km (223.5 mi) of trenches and 2,232.5 km (1,387.2 mi) of natural

defensive barriers such as hills and rivers.

The Chinese were already familiar with the techniques of wall-building by

the time of the Spring and Autumn Period, which began around the 8th century

BC. During the Warring States Period from the 5th century BCE to 221 BCE,

the states of Qin, Wei, Zhao, Qi, Yan and Zhongshan all constructed extensive

fortifications to defend their own borders. Built to withstand the attack of small

arms such as swords and spears, these walls were made mostly by stamping earth

and gravel between board frames.

Qin Shi Huang conquered all opposing states and unified China in 221 BCE,

establishing the Qin Dynasty. Intending to impose centralized rule and prevent

the resurgence of feudal lords, he ordered the destruction of the wall sections that

divided his empire along the former state borders. To protect the empire against

intrusions by the Xiongnu people from the north, he ordered the building of a

1From Wikipedia: http://en.wikipedia.org/wiki/Great_Wall_of_China.

63

http://en.wikipedia.org/wiki/Great_Wall_of_China


new wall to connect the remaining fortifications along the empire’s new northern

frontier. Transporting the large quantity of materials required for construction

was difficult, so builders always tried to use local resources. Stones from the

mountains were used over mountain ranges, while rammed earth was used for

construction in the plains. There are no surviving historical records indicating

the exact length and course of the Qin Dynasty walls. Most of the ancient walls

have eroded away over the centuries, and very few sections remain today. The

human cost of the construction is unknown, but it has been estimated by some

authors that hundreds of thousands, if not up to a million, workers died building

the Qin wall. Later, the Han, Sui, and Northern dynasties all repaired, rebuilt,

or expanded sections of the Great Wall at great cost to defend themselves against

northern invaders. The Tang and Song Dynasties did not build any walls in the

region. The Liao, Jin, and Yuan dynasties, who ruled Northern China throughout

most of the 10-13th centuries, had their original power bases north of the Great

Wall proper; accordingly, they would have no need throughout most of their

history to build a wall along this line. The Liao carried out limited repair of the

Great Wall in a few areas, however the Jin did construct defensive walls in the

12th century, but those were located much to the north of the Great Wall as we

know it, within today’s Inner and Outer Mongolia.

The Great Wall concept was revived again during the Ming Dynasty in the

14th century, and following the Ming army’s defeat by the Oirats in the Battle

of Tumu in 1449. The Ming had failed to gain a clear upper hand over the

Manchurian and Mongolian tribes after successive battles, and the long-drawn

conflict was taking a toll on the empire. The Ming adopted a new strategy to

keep the nomadic tribes out by constructing walls along the northern border of

China. Acknowledging the Mongol control established in the Ordos Desert, the

wall followed the desert’s southern edge instead of incorporating the bend of the

Huang He.

Unlike the earlier Qin fortifications, the Ming construction was stronger and

more elaborate due to the use of bricks and stone instead of rammed earth. As

Mongol raids continued periodically over the years, the Ming devoted considerable

resources to repair and reinforce the walls. Sections near the Ming capital of

Beijing were especially strong.

During the 1440s-1460s, the Ming also built a so-called “Liaodong Wall”.
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Similar in function to the Great Wall (whose extension, in a sense, it was), but

more basic in construction, the Liaodong Wall enclosed the agricultural heartland

of the Liaodong province, protecting it against potential incursions by Jurched-

Mongol Oriyanghan from the northwest and the Jianzhou Jurchens from the

north. While stones and tiles were used in some parts of the Liaodong Wall,

most of it was in fact simply an earth dike with moats on both sides.

Towards the end of the Ming Dynasty, the Great Wall helped defend the

empire against the Manchu invasions that began around 1600. Even after the

loss of all of Liaodong, the Ming army under the command of Yuan Chonghuan

held off the Manchus at the heavily fortified Shanhaiguan pass, preventing the

Manchus from entering the Chinese heartland. The Manchus were finally able

to cross the Great Wall in 1644, after Beijing had fallen to Li Zicheng’s rebels,

and the gates at Shanhaiguan were opened by the commanding Ming general

Wu Sangui, who hoped to use the Manchus to expel the rebels from Beijing.

The Manchus quickly seized Beijing, and defeated both the rebel-founded Shun

Dynasty and the remaining Ming resistance, establishing the Qing Dynasty rule

over the entire China. In 2009, an additional 290 km (180 mi) of previously

undetected portions of the wall, built during the Ming Dynasty, were discovered.

The newly discovered sections range from the Hushan mountains in the northern

Liaoning province, to Jiayuguan in western Gansu province. The sections had

been submerged over time by sandstorms which moved across the arid region.

Under Qing rule, China’s borders extended beyond the walls and Mongolia

was annexed into the empire, so construction and repairs on the Great Wall were

discontinued. On the other hand, the so-called Willow Palisade, following a line

similar to that of the Ming Liaodong Wall, was constructed by the Qing rulers

in Manchuria. Its purpose, however, was not defense but rather migration control.

Ming Dynasty Tombs1

The Ming Dynasty Tombs (Chinese: ²�n); pinyin: Mı́ng Sh́ı Sān Ĺıng;

literally, Thirteen Tombs of the Ming Dynasty) are located some 50 kilometers

due north of central Beijing, within the suburban Changping District of Beijing

1From Wikipedia: http://en.wikipedia.org/wiki/Ming_Dynasty_Tombs.
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municipality. The site, located on the southern slope of Tianshou Mountain

(originally Mount Huangtu), was chosen on the feng shui principles by the third

Ming Dynasty emperor Yongle (1402-1424), who moved the capital of China from

Nanjing to its the present location in Beijing. He is credited with envisioning the

layout of the Ming-era Beijing as well as a number of landmarks and monuments

located therein. After the construction of the Imperial Palace (the Forbidden

City) in 1420, the Yongle Emperor selected his burial site and created his own

mausoleum.

From the Yongle Emperor onwards, 13 Ming Dynasty Emperors were buried

in this area. The Xiaoling Tomb of the first Ming Emperor, Hongwu, is located

near his capital Nanjing; the second emperor, Jianwen was overthrown by Yongle

and disappeared, without a known tomb. The “temporary” Emperor Jingtai was

also not buried here, as the Emperor Tianshun had denied him an imperial burial;

instead, Jingtai was buried west of Beijing. The last Ming emperor Chongzhen,

who hanged himself in April 1644, named Si Ling by the Qing emperor, was the

last to be buried here, but on a much smaller scale than his predecessors.

During the Ming dynasty the tombs were off limits to commoners, but in 1644

Li Zicheng’s army ransacked and set many of the tombs on fire before advancing

and capturing Beijing in April of that year.

The site of the Ming Dynasty Imperial Tombs was carefully chosen according

to Feng Shui (geomancy) principles. According to these, bad spirits and evil winds

descending from the North must be deflected; therefore, an arc-shaped area at

the foot of the Jundu Mountains north of Beijing was selected. This 40 square

kilometer area –enclosed by the mountains in a pristine, quiet valley full of dark

earth, tranquil water and other necessities as per Feng Shui – would become the

necropolis of the Ming Dynasty.

A seven kilometer road named the “Spirit Way” (Shen Dao) leads into the

complex, lined with statues of guardian animals and officials, with a front gate

consisting of a three-arches, painted red, and called the “Great Red Gate”. The

Spirit Way, or Sacred Way, starts with a huge stone memorial archway lying at

the front of the area. Constructed in 1540, during the Ming Dynasty, this archway

is one of the biggest stone archways in China today.

Farther in, the Shengong Shengde Stele Pavilion can be seen. Inside it,

there is a 50-ton tortoise shaped dragon-beast carrying a stone tablet. This was
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added during Qing times and was not part of the original Ming layout. Four

white marble Huabiao (pillars of glory) are positioned at each corner of the stele

pavilion. At the top of each pillar is a mythical beast. Then come two Pillars on

each side of the road, whose surfaces are carved with the cloud design, and tops

are shaped like a rounded cylinder. They are of a traditional design and were

originally beacons to guide the soul of the deceased, The road leads to 18 pairs

of stone statues of mythical animals, which are all sculpted from whole stones

and larger than life size, leading to a three-arched gate known as the Dragon and

Phoenix Gate.

Export all coordinates as KML Export all coordinates as GeoRSS Map of all

microformatted coordinates Place data as RDF At present, only three tombs are

open to the public. There have been no excavations since 1989, but plans for new

archeological research and further opening of tombs have circulated. They can be

seen on Google earth: Chang Ling, the largest; Ding Ling, whose underground

palace has been excavated; and Zhao Ling.

The Ming Tombs were listed as a UNESCO World Heritage Site in August

2003. They were listed along with other tombs under the “Imperial Tombs of the

Ming and Qing Dynasties” designation.
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The organizing committee wishes

you a pleasant stay in Beijing!
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