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Abstract

The sign-constrained Stiefel manifold in Rn×r is a segment of the Stiefel manifold with
fixed signs (nonnegative or nonpositive) for some entries of the matrices. It includes the
nonnegative Stiefel manifold as a special case. We present global and local error bounds that
provide an inequality with easily computable residual functions and explicit coefficients to
bound the distance from matrices in Rn×r to the sign-constrained Stiefel manifold. Moreover,
we show that the error bounds cannot be improved except for the multiplicative constants
under some mild conditions, which explains why two square-root terms are necessary in the
bounds when 1 < r < n and why the ℓ1 norm can be used in the bounds when r = n

or r = 1 for the sign constraints and orthogonality, respectively. The error bounds are
applied to derive exact penalty methods for minimizing a Lipschitz continuous function with
orthogonality and sign constraints.
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1 Introduction

Let n and r be two integers such that 1 ≤ r ≤ n, and Sn,r := {X ∈ Rn×r : XTX = Ir} be
the Stiefel manifold, where Ir is the r × r identity matrix. Given two disjoint subsets P and N
of {j : 1 ≤ j ≤ r}, denote

Rn×r
S

:=
{
X ∈ Rn×r : Xi,j ≥ 0 for j ∈ P and Xi,j ≤ 0 for j ∈ N , 1 ≤ i ≤ n

}
,
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which is a subset of Rn×r with column-wise nonnegative or nonpositive constraints on some
columns.

In this paper, we consider the sign-constrained Stiefel manifold defined as

Sn,rS := Sn,r∩ Rn×r
S .

When P = {j : 1 ≤ j ≤ r}, Rn×r
S reduces to the nonnegative orthant Rn×r

+ , and Sn,rS reduces to
the nonnegative Stiefel manifold Sn,r+ := {X ∈ Sn,r : X ≥ 0}.

If we define the sign matrix S ∈ Rn×r as the matrix with

Si,j =


1, if j ∈ P ,

−1, if j ∈ N ,

0, otherwise,

1 ≤ i ≤ n, (1.1)

then Sn,rS can be formulated as

Sn,rS = {X ∈ Rn×r : S ◦X ≥ 0, XTX = Ir},

where ◦ signifies the Hadamard product. We will investigate error bounds

dist(X, Sn,rS ) ≤ ν∥(S ◦X)−∥qF for X ∈ Sn,r, (1.2)
dist(X, Sn,rS ) ≤ ν∥XTX − Ir∥qF for X ∈ Rn×r

S , (1.3)
dist(X, Sn,rS ) ≤ ν(∥(S ◦X)−∥qF + ∥XTX − Ir∥qF) for X ∈ Rn×r, (1.4)

where ν and q are positive constants, and Y− := max{−Y, 0} stands for the entry-wise nonneg-
ative part of −Y for any matrix Y . The bounds (1.2)–(1.4) are global error bounds for Sn,rS

relative to Sn,r, Rn×r
S , and Rn×r, respectively, with the first two being special cases of the last

one.
According to the error bound of Luo-Pang presented in [19, Theorem 2.2], there exist ν > 0

and q > 0 such that the inequalities in (1.2)–(1.4) hold for all X in a compact subset of Rn×r.
Moreover, due to the error bound for polynomial systems given in [14, Corollary 3.8], for all X
in a compact subset of Rn×r, there exists a ν such that the inequalities in (1.2)–(1.4) hold with
a dimension-dependent value of q that is less than 6−2nr. However, to the best of our knowledge,
the explicit value of ν and the value of q that is independent of the dimension in (1.2)–(1.4) are
still unknown even in the special case of Sn,rS = Sn,r+ , and it is also unknown whether the error
bounds hold in an unbounded set.

Being a fundamental concept in optimization, error bound plays a crucial role in both theory
and methods for solving systems of equations and optimization problems [19, 22]. One of its appli-
cations is to develop penalty methods for constrained optimization problems. Let F : Rn×r → R
be a continuous function. The minimization problem

min {F (X) : X ∈ Sn,rS } (1.5)
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can be found in a wide range of optimization models in data science, including nonnegative
principal component analysis [15, 30], nonnegative Laplacian embedding [18], discriminative
nonnegative spectral clustering [28], orthogonal nonnegative matrix factorization [23, 29], and
some K-indicators models for data clustering [3, 26].

Even in the special case of Sn,rS = Sn,r+ , the constraints of problem (1.5) are challenging to
handle due to their combinatorial nature (note that, for example, Sn,n+ equals the set of all
permutation matrices on Rn). To deal with these difficult constraints, the penalty problems

min
{
F (X) + µ∥(S ◦X)−∥qF : X ∈ Sn,r

}
, (1.6)

min
{
F (X) + µ∥XTX − Ir∥qF : X ∈ Rn×r

S

}
, (1.7)

min
{
F (X) + µ(∥(S ◦X)−∥qF + ∥XTX − Ir∥qF) : X ∈ Rn×r

}
, (1.8)

have been widely used for solving (1.5) with Sn,rS = Sn,r+ , where µ is the penalty parameter. See for
example [1, 24, 28, 30] and the references therein. However, the exactness of problems (1.6)–(1.8)
regarding global minimizers and local minimizers of problem (1.5) is not well understood.

The main contribution of this paper is to establish the error bounds (1.2)–(1.4) with ν = 15r
3
4

and q = 1/2 without any additional restriction on X. Moreover, we demonstrate that the error
bounds cannot hold for q > 1/2 under mild conditions when 1 < r < n and Sn,rS = Sn,r+ . In addi-
tion, we show that the error bounds (1.2)–(1.4) hold with q = 1 and ν = 7

√
r when |P|+|N | = 1,

and hold with q = 1 and ν = 9n when |P| + |N | = n, but they cannot hold with q > 1. As an
application of error bounds (1.2)–(1.4) with ν = 15r

3
4 and q = 1/2, we show the exactness of

the penalty problems (1.6) and (1.7) under the assumption that F is Lipschitz continuous, tak-
ing Sn,rS = Sn,r+ as an example. Moreover, we show the existence of Lipschitz continuous functions
such that penalty problems (1.6) and (1.7) with q > 1/2 are not exact for global and local min-
imizers of the corresponding constrained problems. The values of q in error bounds (1.2)–(1.4)
for some special sign matrices S ∈ Rn×r defined in (1.1) by P and N are summarized in Table 1.

S hold fail
|P| = r or |N | = r, 1 < r < n q = 1/2 q > 1/2

|P| = 1 or |N | = 1, 1 ≤ r ≤ n q = 1 q > 1

|P|+ |N | = n, r = n q = 1 q > 1

Table 1: Error bounds (1.2)–(1.4) hold or fail for some special sign matrices S ∈ Rn×r

Very recently, our error bounds and matrix inequalities have been used to study constant
modulus optimization and optimal orthogonal channel selection [2, 16, 17], which have a wide
variety of applications in signal processing, communications, and data science.
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The rest of the paper is organized as follows. In Section 2, we introduce some notations and
preliminaries. Section 3 derives the error bounds (1.2)–(1.4) in the special case of Sn,rS = Sn,r+ .
Section 4 extends these bounds to the general case. Section 5 investigates the exactness of the
penalty problems (1.6)–(1.8) using the new error bounds. Section 6 considers applications of
the theoretical results established in this paper. We conclude the paper in Section 7.

2 Notation and preliminaries

For any matrix X ∈ Rn×r, X+ := max{X, 0} = X +X− is the projection of X onto Rn×r
+ . In

addition, the singular value vector of X is denoted by σ(X) ∈ Rr, the entries of which are in the
descent order. Meanwhile, Σ(X) ∈ Rn×r is the matrix such that X = UΣ(X)V T is the singular
value decomposition of X, the diagonal of Σ(X) being σ(X). We use 1 to denote the vector
with all entries being one, and its dimension will be clear from the context.

Unless otherwise specified, ∥·∥ stands for a general vector norm. For any constant p ∈ [1,+∞),
we use ∥ · ∥p to represent either the ℓp-norm of vectors or the operator norm induced by this
vector norm for matrices. In addition, we use ∥·∥ℓp to denote the entry-wise ℓp-norm of a matrix,
namely the ℓp-norm of the vector that contains all the entries of the matrix. Note that ∥ · ∥ℓ2 is
the Frobenius norm, which is also denoted by ∥ · ∥F. When Rn×r is equipped with the Frobenius
norm, we use B(X, δ) to represent the open ball in Rn×r centered at a point X ∈ Rn×r with a
radius δ > 0, and dist(X, T ) to denote the distance from a point X ∈ Rn×r to a set T ⊂ Rn×r.
Finally, given a minimization problem, we use Argmin to denote the set of global minimizers.

Lemma 2.1 is fundamental for the analysis of distances between matrices. This lemma is
stated for unitarily invariant norms (see [10, Section 3.5] for this concept), although we are most
interested in the case with the Frobenius norm.

Lemma 2.1 (Mirsky). For any matrices X ∈ Rn×r and Y ∈ Rn×r, we have

∥Σ(X)− Σ(Y )∥ ≤ ∥X − Y ∥ (2.1)

for any unitarily invariant norm ∥ · ∥ on Rn×r. When ∥ · ∥ is the Frobenius norm, the equality
holds in (2.1) if and only if there exist orthogonal matrices U ∈ Rn×n and V ∈ Rr×r such
that X = UΣ(X)V T and Y = UΣ(Y )V T.

The square case (i.e., n = r) of inequality (2.1) is due to Mirsky [20, Theorem 5], and the
general case can be found in [11, Theorem 7.4.9.1]. A direct corollary of Lemma 2.1 is the
following Hoffman-Wielandt [9] type bound for singular values, which is equivalent to the von
Neumann trace inequality [25, Theorem I] (see also [13, Theorem 2.1]).

Lemma 2.2 (von Neumann). For any matrices X ∈ Rn×r and Y ∈ Rn×r, we have

∥σ(X)− σ(Y )∥2 ≤ ∥X − Y ∥F,

and equivalently, tr(XTY ) ≤ σ(X)Tσ(Y ).
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The following lemma is another consequence of Lemma 2.1. For this result, recall that each
matrix X ∈ Rn×r has a polar decomposition in the form of X = UP , where U belongs to Sn,r

and P = (XTX)
1
2 , with U being called a unitary polar factor of X. The square case of this

lemma is due to Fan and Hoffman [7, Theorem 1]. For the general case, see [8, Theorem 8.4],
which details a proof based on Lemma 2.1.

Lemma 2.3 (Fan-Hoffman). If U ∈ Rn×r is a unitary polar factor of a matrix X ∈ Rn×r, then

∥X − U∥ = min{∥X − V ∥ : V ∈ Sn,r}

for any unitarily invariant norm ∥ · ∥ on Rn×r.

Lemma 2.4 collects a few basic facts on the distance from a matrix in Rn×r to Sn,r.

Lemma 2.4. For any matrix X ∈ Rn×r, we have

dist(X, Sn,r) = ∥σ(X)− 1∥2 ≤ min
{
∥XTX − Ir∥F, r

1
4 ∥XTX − Ir∥

1
2
F

}
.

In addition, ∥XTX − Ir∥F ≤ (∥X∥2 + 1)∥σ(X)− 1∥2.

Proof. Let U ∈ Sn,r be a unitary polar factor of X. By Lemma 2.3,

dist(X, Sn,r) = ∥X − U∥F = ∥UT(X − U)∥F = ∥(XTX)
1
2 − Ir∥F = ∥σ(X)− 1∥2.

The entry-wise inequalities |σ(X)− 1| ≤ |σ(X)2 − 1| ≤ (∥X∥2 + 1)|σ(X)− 1| imply

∥σ(X)− 1∥2 ≤ ∥σ(X)2 − 1∥2 ≤ (∥X∥2 + 1)∥σ(X)− 1∥2. (2.2)

Noting that ∥σ(X)2 − 1∥2 = ∥XTX − Ir∥F, we obtain from (2.2) that

∥σ(X)− 1∥2 ≤ ∥XTX − Ir∥F ≤ (∥X∥2 + 1)∥σ(X)− 1∥2.

Finally, since |σ(X)− 1|2 ≤ |σ(X)2 − 1|, we have

∥σ(X)− 1∥22 ≤ ∥σ(X)2 − 1∥1 ≤
√
r∥σ(X)2 − 1∥2 =

√
r∥XTX − Ir∥F.

The proof is complete.

By Lemmas 2.3 and 2.4, dist(X, Sn,r+ ) = ∥σ(X)− 1∥2 if X has a nonnegative unitary polar
factor. It is the case in the following lemma, where this factor is X(XTX)−

1
2 .

Lemma 2.5. For a matrix X ∈ Rn×r
+ , if XTX is nonsingular and diagonal, then

dist(X, Sn,r+ ) = ∥σ(X)− 1∥2.

Lemma 2.6 is an elementary property of Sn,r+ . We omit the proof.

Lemma 2.6. For a matrix X ∈ Sn,r+ , each row of X has at most one nonzero entry.
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3 Error bounds for the nonnegative Stiefel manifold

This section will establish the error bounds (1.2)–(1.4) in the special case of Sn,rS = Sn,r+ ,
where S ◦ X reduces to X. Subsection 3.1 demonstrates (1.2)–(1.4) with q = 1 when r = 1

or r = n, and points out that they cannot hold with q > 1 regardless of r ∈ {1, . . . , n}. In
Subsection 3.2, we derive the bounds (1.2)–(1.4) with q = 1/2 for 1 ≤ r ≤ n, and Subsection 3.3
elaborates on the tightness of these bounds when 1 < r < n. As an application of our results,
we briefly discuss the linear regularity of Rn×r

+ and Sn,r in Subsection 3.4.
General discussions on error bounds can be found in [6, Section 6.1]. Here we focus on error

bounds for Sn,r+ defined by two special functions

ρ1(X) := ∥X−∥q1F + ∥σ(X)− 1∥q22 ,

ρ2(X) := ∥X−∥q1F + ∥XTX − Ir∥q2F ,

where q1 and q2 are positive constants. These functions are residual functions for Sn,r+ rel-
ative to Rn×r, namely nonnegative-valued functions on Rn×r whose zeros coincide with the
elements of Sn,r+ . The residual function ρ2 is easily computable and it reduces to the one in (1.4)
when q1 = q2 = q.

We say that ρ1 defines a local error bound for Sn,r+ relative to Rn×r if there exist positive
constants ϵ and ν such that

dist(X, Sn, r+ ) ≤ νρ1(X) (3.1)

for all X ∈ Rn×r satisfying ∥X−∥F + ∥XTX − Ir∥F ≤ ϵ, and we say it defines a global error
bound for Sn,r+ relative to Rn×r if (3.1) holds for all X ∈ Rn×r. Likewise, we can use ρ1 to define
error bounds for Sn,r+ relative to any set S ⊂ Rn×r that contains Sn,r+ , for example, S = Rn×r

+ ,
in which case ρ1 reduces to its second term. Similar things can be said about ρ2. Theorems 3.5
and 3.12 will specify the precise range of q1 and q2 so that ρ1 and ρ2 define local or global error
bounds for Sn,r+ relative to Rn×r.

3.1 Tight error bounds with r = 1 or r = n

In this subsection, we show that the error bounds (1.2)–(1.4) hold for q = 1 when r = 1 or r = n.
Moreover, we explain why bounds (1.2)–(1.4) cannot hold for q > 1 in general.

The bound for r = 1 is easy to establish due to the simple fact that

dist(x, Sn,1+ ) = dist(x, Sn,1) =
∣∣∥x∥2 − 1

∣∣ for all x ∈ Rn
+. (3.2)

Indeed, when x = 0, this is trivial; when x ̸= 0, equality (3.2) is true because the projection of x
onto Sn,1+ equals its projection onto Sn,1, which is x/∥x∥2 ≥ 0.

Theorem 3.1. For any vector x ∈ Rn,

dist(x, Sn,1+ ) ≤ 2∥x−∥2 +
∣∣∥x∥2 − 1

∣∣.
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Proof. As observed above, dist(x+, Sn,1+ ) =
∣∣∥x+∥2 − 1

∣∣. Meanwhile,∣∣∥x+∥2 − 1
∣∣− ∣∣∥x∥2 − 1

∣∣ ≤
∣∣∥x+∥2 − ∥x∥2

∣∣ ≤ ∥x+ − x∥2 = ∥x−∥2.

Thus dist(x, Sn,1+ ) ≤ ∥x−∥2 + dist(x+, Sn,1+ ) ≤ 2∥x−∥2 +
∣∣∥x∥2 − 1

∣∣.
To establish the error bounds for r = n, we first prove Proposition 3.2, which is essentially

a weakened version of the observation (3.2) in the current situation. Note that the matrix Y

defined in the proof below is indeed the rounding matrix proposed in [12, Procedure 3.1].

Proposition 3.2. For any matrix X ∈ Rn×n
+ , if ∥σ(X)− 1∥2 < 1/(4

√
n), then

dist(X, Sn,n+ ) ≤ 7
√
n∥σ(X)− 1∥2. (3.3)

Proof. For each i ∈ {1, . . . , n}, take the smallest integer li ∈ {1, . . . , r} so that

Xi,li = max {Xi,j : j = 1, . . . , r}.

Consider the matrix Y ∈ Rn,r
+ defined by

Yi,j =

Xi,li if j = li,

0 otherwise.
(3.4)

We will demonstrate (3.3) by establishing bounds for ∥X − Y ∥F and dist(Y, Sn,n+ ).
Consider ∥X − Y ∥F first. Due to the fact that ∥σ(X) − 1∥2 < 1/(4

√
n), all the n singular

values of X are at least 3/4. Since X ≥ 0 and Xi,li = max{Xi,j : j = 1, . . . , n}, we have

Xi,li ≥ 1√
n

(
XXT

) 1
2

i,i
≥ 3

4
√
n

for each i ∈ {1, . . . , n}.

Fix an integer j ∈ {1, . . . , r}. For each l ∈ {1, . . . , r}, define

1(j ̸= l) = 1(l ̸= j) =

1 if l ̸= j,

0 if l = j.

With xj and yj denoting the jth columns of X and Y , respectively, we have

9

16n
∥xj − yj∥22 =

9

16n

n∑
i=1

X2
i,j1(j ̸= li)

≤
n∑

i=1

X2
i,li

X2
i,j1(li ̸= j)

≤
n∑

l=1

n∑
i=1

X2
i,lX

2
i,j1(l ̸= j)

≤
n∑

l=1

(
n∑

i=1

Xi,lXi,j

)2

1(l ̸= j)

=

n∑
l=1

(
XTX − In

)2
l,j
1(l ̸= j).
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Hence
∥X − Y ∥F ≤ 4

3

√
n∥XTX − In∥F.

By Lemma 2.4 and the fact that ∥X∥2 ≤ 1 + ∥σ(X)− 1∥2 ≤ 5/4, we have further

∥X − Y ∥F ≤ 4

3

√
n(∥X∥2 + 1)∥σ(X)− 1∥2 ≤ 3

√
n∥σ(X)− 1∥2. (3.5)

Now we estimate dist(Y, Sn,n+ ). According to inequality (3.5) and Lemma 2.2,

∥σ(Y )− 1∥2 ≤ ∥X − Y ∥F + ∥σ(X)− 1∥2 ≤ 4
√
n∥σ(X)− 1∥2. (3.6)

Since ∥σ(X)−1∥2 < 1/(4
√
n), we have ∥σ(Y )−1∥2 < 1, which implies that Y TY is nonsingular.

Since Y has at most one nonzero entry in each row, it is clear that Y TY is diagonal. Thus we
can invoke Lemma 2.5 and obtain

dist(Y, Sn,n+ ) = ∥σ(Y )− 1∥2.

Therefore, combining inequalities (3.5) and (3.6), we conclude that (3.3) is true.

Theorem 3.3 presents global and local error bounds for Sn,n+ relative to Rn×n.

Theorem 3.3. For any matrix X∈ Rn×n, we have

dist(X, Sn,n+ ) ≤ 9n (∥X−∥F + ∥σ(X)− 1∥2) . (3.7)

Moreover, if ∥X−∥F + ∥σ(X)− 1∥2 < 1/(4
√
n), then

dist(X, Sn,n+ ) ≤ 8
√
n (∥X−∥F + ∥σ(X)− 1∥2) . (3.8)

Proof. We first prove (3.8), assuming that ∥X−∥F + ∥σ(X)− 1∥2 < 1/(4
√
n). By Lemma 2.2,

this assumption ensures ∥σ(X+)− 1∥2 < 1/(4
√
n). Thus Proposition 3.2 renders

dist(X+, Sn,n+ ) ≤ 7
√
n∥σ(X+)− 1∥2 ≤ 7

√
n (∥X−∥F + ∥σ(X)− 1∥2) ,

which justifies inequality (3.8) since dist(X, Sn,n+ ) ≤ ∥X−∥F + dist(X+, Sn,n+ ).
Now we consider inequality (3.7). If ∥X−∥F + ∥σ(X)− 1∥2 < 1/(4

√
n), then (3.7) holds due

to (3.8). When ∥X−∥F + ∥σ(X)− 1∥2 ≥ 1/(4
√
n), inequality (3.7) is justified by

dist(X, Sn,n+ ) ≤ dist(X, Sn,n) + 2
√
n

≤ ∥σ(X)− 1∥2 + 8n(∥X−∥F + ∥σ(X)− 1∥2)

≤ 9n (∥X−∥F + ∥σ(X)− 1∥2) ,

where the first inequality holds because the diameter of Sn,n is 2
√
n.
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Remark 3.4. Since
∣∣∥x∥2 − 1

∣∣ ≤ ∣∣∥x∥22 − 1
∣∣ and ∥σ(X) − 1∥2 ≤ ∥XTX − In∥F, Theorems 3.1

and 3.3 imply the error bounds (1.2)–(1.4) with q = 1 for r ∈ {1, n}. These bounds can-
not be improved except for the multiplicative constants. Indeed, for any matrix X ∈ Rn×r

with r ∈ {1, . . . , n} and ∥X∥2 ≤ 1, we have

dist(X, Sn,r+ ) ≥ max
{
dist(X, Rn×r

+ ), dist(X, Sn,r)
}

≥ 1

2

[
dist(X, Rn×r

+ ) + dist(X, Sn,r)
]

=
1

2
(∥X−∥F + ∥σ(X)− 1∥2)

≥ 1

2
∥X−∥F +

1

4
∥XTX − Ir∥F,

(3.9)

where the last two lines apply Lemma 2.4. This also implies that the bounds (1.2)–(1.4) cannot
hold for any r ∈ {1, . . . , n} with q > 1.

Theorem 3.5 is an extension of Theorems 3.1 and 3.3. It specifies the possible exponents
of ∥X−∥F and ∥σ(X) − 1∥2 or ∥XTX − Ir∥F in local and global error bounds for Sn,r+ relative
to Rn×r for r ∈ {1, n}. As we will see from (b) of this theorem and its proof, when r = 1

or r = n, the error bound (1.2) can hold if and only if q ≤ 1, whereas (1.3) and (1.4) can hold
if and only if 1/2 ≤ q ≤ 1.

Theorem 3.5. Let q1 and q2 be positive constants. Suppose that r = 1 or r = n.

(a) The function ρ1(X) := ∥X−∥q1F + ∥σ(X)− 1∥q22 defines a local error bound for Sn,r+ relative
to Rn×r if and only if q1 ≤ 1 and q2 ≤ 1, and it defines a global error bound if and only
if q1 ≤ q2 = 1.

(b) The function ρ2(X) := ∥X−∥q1F + ∥XTX − Ir∥q2F defines a local error bound for Sn,r+ relative
to Rn×r if and only if q1 ≤ 1 and q2 ≤ 1, and it defines a global error bound if and only
if q1 ≤ 1 and 1/2 ≤ q2 ≤ 1.

Proof. We consider only the case with r = n. The other case is similar.
(a) Based on (3.8) and (3.9), it is easy to check that ρ1 defines a local error bound for Sn,n+

relative to Rn×n if and only if q1 ≤ 1 and q2 ≤ 1. Hence we only need to consider the global
error bound.

Suppose that q1 ≤ q2 = 1. Let us show that

dist(X, Sn,n+ ) ≤ 9n
(
∥X−∥q1F + ∥σ(X)− 1∥2

)
= 9nρ1(X) (3.10)

for X ∈ Rn×n. If ∥X−∥F ≤ 1, then (3.10) follows from (3.7). When ∥X−∥F > 1,

dist(X, Sn,n+ ) ≤ dist(X, Sn,n) + 2
√
n ≤ ∥σ(X)− 1∥2 + 2

√
n∥X−∥q1F ,

which validates (3.10) again. Hence ρ1 defines a global error bound for Sn,n+ relative to Rn×n.
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Now suppose that ρ1 defines a global error bound for Sn,n+ relative to Rn×n. Then it also
defines a local error bound, implying q1 ≤ 1 and q2 ≤ 1. Consider a sequence {Xk} ⊂ Rn×n

+

such that XT
k Xk = kIn for each k ≥ 1. Then

dist(Xk, Sn,n+ ) ≥ dist(Xk, Sn,n) = ∥σ(Xk)− 1∥2 = [ρ1(Xk)]
1
q2 → ∞.

By assumption, dist(Xk, Sn,n+ ) ≤ νρ1(Xk) for each k ≥ 1 with a constant ν. Hence we
know q2 ≥ 1. To conclude, we have q1 ≤ q2 = 1. The proof for (a) is complete.

(b) Based on (3.8), (3.9), and the fact that ∥σ(X)− 1∥2 ≤ ∥XTX − In∥F (Lemma 2.4), it is
easy to check that ρ2 defines a local error bound for Sn,n+ relative to Rn×n if and only if q1 ≤ 1

and q2 ≤ 1. Hence we consider only the global error bound.
Suppose that q1 ≤ 1 and 1/2 ≤ q2 ≤ 1. We will show that

dist(X, Sn,n+ ) ≤ 9n
(
∥X−∥q1F + ∥XTX − In∥q2F

)
= 9nρ2(X) (3.11)

for X ∈ Rn×n. If ∥XTX − In∥F ≤ 1, then (3.11) holds because of (3.10) and the fact that
∥σ(X)− 1∥2 ≤ ∥XTX − In∥F. When ∥XTX − In∥F > 1,

dist(X, Sn,n+ ) ≤ dist(X, Sn,n) + 2
√
n

≤ n
1
4 ∥XTX − In∥

1
2
F + 2

√
n∥XTX − In∥q2F

≤ (n
1
4 + 2

√
n)∥XTX − In∥q2F ,

justifying (3.11) again, where the second inequality applies Lemma 2.4. Hence ρ2 defines a global
error bound for Sn,n+ relative to Rn×n.

Now suppose that ρ2 defines a global error bound for Sn,n+ relative to Rn×n. Then q1 ≤ 1

and q2 ≤ 1, as ρ2 also defines a local error bound. Consider again a sequence {Xk} ⊂ Rn×n
+ such

that XT
k Xk = kIn for each k ≥ 1. Then

dist(Xk, Sn,n+ ) ≥ ∥σ(Xk)− 1∥2 = (
√
k − 1)

√
n,

ρ2(Xk) = ∥XT
k Xk − In∥q2F = [(k − 1)

√
n]q2 .

By assumption, dist(Xk, Sn,n+ ) ≤ νρ2(Xk) for each k ≥ 1 with a constant ν. Hence we
have q2 ≥ 1/2. The proof for (b) is complete.

3.2 Error bounds with 1 ≤ r ≤ n

Now we shift our attention to the general case with 1 ≤ r ≤ n. Given previous bounds
for r ∈ {1, n}, we are particularly interested in the situation where 1 < r < n.

We will first prove a local error bound for Sn,r+ relative to Rn×r
+ as detailed in Proposition 3.8.

This bound will play a role similar to what observation (3.2) and Proposition 3.2 do in the cases
of r = 1 and r = n, respectively. To simplify its proof, we start with the following lemma.
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Lemma 3.6. For any matrix X ∈ Rn×r
+ , there exists a matrix Y ∈ Rn×r

+ such that Y TY is
diagonal and

max
{
∥xj − yj∥2,

∣∣∥yj∥2 − 1
∣∣} ≤ ∥zj∥

1
2
1 for each j ∈ {1, . . . , r}, (3.12)

where xj, yj, and zj denote the jth column of X, Y , and Z = XTX − Ir, respectively.

Proof. Define li (1 ≤ i ≤ n) and Y as in the proof of Proposition 3.2. Since Y TY is diagonal
as mentioned before, it suffices to establish (3.12) for this Y .

Fix an index j ∈ {1, . . . , r}. Recalling that 0 ≤ Xi,j ≤ Xi,li for each i ∈ {1, . . . , n}, we have

∥xj − yj∥22 =
n∑

i=1

X2
i,j1(j ̸= li)

≤
n∑

i=1

Xi,liXi,j1(li ̸= j)

≤
r∑

l=1

(
n∑

i=1

Xi,lXi,j

)
1(l ̸= j).

(3.13)

Since XTX and Z have the same off-diagonal entries, inequality (3.13) yields

∥xj − yj∥22 ≤
r∑

l=1

|Zl,j |1(l ̸= j) = ∥zj∥1 − |Zj,j |. (3.14)

It remains to prove
∣∣∥yj∥2 − 1

∣∣2 ≤ ∥zj∥1. To this end, note that∣∣∥yj∥2 − 1
∣∣2 ≤

∣∣∥yj∥22 − 1
∣∣ ≤ ∣∣∥xj∥22 − 1

∣∣+ ∥xj − yj∥22, (3.15)

where the first inequality uses the fact that |t − 1|2 ≤ |t2 − 1| for any t ≥ 0, and the sec-
ond one is because ∥xj∥22 − ∥yj∥22 = ∥xj − yj∥22 due to the special construction (3.4) of Y .
Since ∥xj∥22 − 1 = Zj,j , we can combine (3.14) and (3.15) to obtain∣∣∥yj∥2 − 1

∣∣2 ≤
∣∣∥xj∥22 − 1

∣∣+ (∥zj∥1 − |Zj,j |
)

= ∥zj∥1.

The proof is complete.

Remark 3.7. As mentioned earlier, the matrix Y in the proof of Lemma 3.6 is the rounding
matrix in [12, Procedure 3.1]. Inequality (3.13) is essentially the second inequality in Case II
of the proof for [12, Lemma 3.2]. The columns of X are assumed to be normalized in [12], but
such an assumption has no effect on this inequality.

Proposition 3.8. For any matrix X ∈ Rn×r
+ , if ∥σ(X)− 1∥2 < 1/(3

√
r), then

dist(X, Sn,r+ ) ≤ 2

√
7r

3
∥σ(X)− 1∥

1
2
2 . (3.16)

11



Proof. Let Y and Z be the matrices specified in Lemma 3.6. Then (3.12) leads to

∥X − Y ∥2F =

r∑
j=1

∥xj − yj∥22 ≤
r∑

j=1

∥zj∥1 = ∥Z∥ℓ1 . (3.17)

Since Y TY is diagonal, the entries of σ(Y ) are ∥y1∥2, . . . , ∥yr∥2. Thus (3.12) also provides

∥σ(Y )− 1∥22 =

r∑
j=1

(∥yj∥2 − 1)2 ≤
r∑

j=1

∥zj∥1 = ∥Z∥ℓ1 . (3.18)

Comparing (3.16) with (3.17)–(3.18), we only need to prove that ∥σ(X)−1∥2 <1/(3
√
r) ensures

∥Z∥ℓ1 ≤ 7r

3
∥σ(X)− 1∥2 (3.19)

and
dist(Y, Sn,r+ ) = ∥σ(Y )− 1∥2. (3.20)

Since ∥Z∥ℓ1 =
∑n

i=1

∑r
j=1 |Zij | ≤ r∥Z∥F, inequality (3.19) is a direct consequence of

∥Z∥F = ∥XTX − Ir∥F ≤ (∥X∥2 + 1)∥σ(X)− 1∥2 ≤ 7

3
∥σ(X)− 1∥2, (3.21)

where the last inequality is because ∥X∥2 ≤ ∥σ(X)−1∥2+1 < 4/3. Meanwhile, inequality (3.21)
also leads to

∥zj∥1 ≤
√
r∥Z∥F ≤ 7

√
r

3
∥σ(X)− 1∥2 < 1 for each j ∈ {1, . . . , r}.

Therefore, inequality (3.12) implies that Y does not contain any zero column. Hence the diagonal
entries of Y TY are all positive, which ensures the nonsingularity of this matrix since it is diagonal.
Thus Lemma 2.5 yields (3.20). The proof is complete.

Now we are ready to establish a local error bound for Sn,r+ relative to Rn×r.

Theorem 3.9. For any matrix X ∈ Rn×r, if ∥X−∥F + ∥σ(X)− 1∥2 < 1/(3
√
r), then

dist(X, Sn,r+ ) ≤ 4
√
r

(
∥X−∥

1
2
F + ∥σ(X)− 1∥

1
2
2

)
. (3.22)

Proof. According to Lemma 2.2,

∥σ(X+)− 1∥2 ≤ ∥X−∥F + ∥σ(X)− 1∥2.

Thus ∥σ(X+)− 1∥2 < 1/(3
√
r) by assumption, and hence Proposition 3.8 implies

dist(X+, Sn,r+ ) ≤ 2

√
7r

3

(
∥X−∥

1
2
F + ∥σ(X)− 1∥

1
2
2

)
. (3.23)

On the other hand, since ∥X−∥F < 1/(3
√
r), it holds that

∥X −X+∥F = ∥X−∥F ≤ 1
√
3r

1
4

∥X−∥
1
2
F ≤

√
r

3
∥X−∥

1
2
F . (3.24)

Inequality (3.22) follows from (3.23) and (3.24) because 2
√
7/3 + 1/

√
3 < 4.

12



Theorem 3.9 presents only a local error bound. Indeed, ∥X−∥
1
2
F+∥σ(X)−1∥

1
2
2 does not define

a global error bound for Sn,r+ relative to Rn×r, which will be explained later by Theorem 3.12.
To have a global error bound, we need to replace the term ∥σ(X) − 1∥2 with ∥XTX − Ir∥F as
in the following theorem.

Theorem 3.10. For any matrix X ∈ Rn×r, we have

dist(X, Sn,r+ ) ≤ 5r
3
4

(
∥X−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
. (3.25)

Moreover, if ∥X−∥F + ∥XTX − Ir∥F < 1/(3
√
r), then

dist(X, Sn,r+ ) ≤ 4
√
r

(
∥X−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
. (3.26)

Proof. Recall that ∥σ(X) − 1∥2 ≤ ∥XTX − Ir∥F (Lemma 2.4). Thus (3.26) is a direct conse-
quence of Theorem 3.9 when ∥X−∥F + ∥XTX − Ir∥F < 1/(3

√
r).

Now we prove (3.25). Let us assume that

∥X−∥F + ∥XTX − Ir∥F ≥ 1

3
√
r
,

as (3.25) is already justified by (3.26) when this inequality does not hold. Under this assumption,

∥X−∥
1
2
F + ∥XTX − Ir∥

1
2
F ≥ 1

√
3r

1
4

. (3.27)

Noting that the diameter of Sn,r is 2
√
r, we then have

dist(X, Sn,r+ ) ≤ dist(X, Sn,r) + 2
√
r

≤ r
1
4 ∥XTX − Ir∥

1
2
F + 2

√
3r

3
4

(
∥X−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
≤ 5r

3
4

(
∥X−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
,

(3.28)

where the second inequality applies Lemma 2.4 and (3.27).

Recently, Theorem 3.10 has been used in [16, 17] to establish error bounds for dist(X, Sn,r+ )

for X in the unit ball of spectral norm, i.e., {X ∈ Rn×r : ∥X∥ ≤ 1}. See (31) in [16].

3.3 Tightness of the error bounds when 1 < r < n

The following proposition shows that the bounds presented in Theorems 3.9 and 3.10 are tight
up to multiplicative constants when 1 < r < n, no matter whether X belongs to Sn,r, Rn×r

+ ,
or neither of them. Consequently, the error bounds (1.2)–(1.4) cannot hold with q > 1/2

when 1 < r < n.
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Proposition 3.11. Suppose that 1 < r < n.

(a) There exists a sequence {Xk} ⊂ Sn,r \ Rn×r
+ such that (Xk)− → 0 and

dist(Xk, Sn,r+ ) ≥ 1√
2
∥(Xk)−∥

1
2
F . (3.29)

(b) There exists a sequence {Xk} ⊂ Rn×r
+ \ Sn,r such that XT

k Xk → Ir and

dist(Xk, Sn,r+ ) ≥ 1√
2
∥XT

k Xk − Ir∥
1
2
F . (3.30)

(c) There exists a sequence {Xk} ⊂ Rn×r \ (Rn×r
+ ∪ Sn,r) such that (Xk)− → 0, XT

k Xk → Ir,
and

dist(Xk, Sn,r+ ) ≥ 1√
2 + 1

(
∥(Xk)−∥

1
2
F + ∥XT

k Xk − Ir∥
1
2
F

)
. (3.31)

Proof. Take a sequence {εk} ⊂ (0, 1/2) that converges to 0. For each k ≥ 1, let Xk ∈ Rn×r be
a matrix such that its first 3 rows are

εk εk

r − 2︷ ︸︸ ︷
0 . . . 0

ak bk 0 . . . 0

ck dk 0 . . . 0


with ak, bk, ck, dk being specified later, its 4th to (r + 1)th rows are the last r − 2 rows
of Ir (if r ≥ 3), and its other rows are zero (if any). In addition, let X̄k be a projection of Xk

onto Sn,r+ . Then the first row of X̄k contains at most one nonzero entry according to Lemma 2.6.
Hence

dist(Xk, Sn,r+ ) = ∥Xk − X̄k∥F ≥ εk. (3.32)

Moreover, it is clear that (Xk)− → 0 and XT
k Xk → Ir if

ak → 1, bk → 0, ck → 0, and dk → 1. (3.33)

In the sequel, we will configure ak, bk, ck, and dk subject to (3.33) so that {Xk} validates (a), (b),
and (c) one by one.

(a) Define

ak =
√

1− ε2k, bk = −
ε2k
ak

, ck = 0, and dk =
√
1− ε2k − b2k.

Then Xk ∈ Sn,r \Rn×r
+ . Clearly, ∥(Xk)−∥F = ε2k/ak. Hence (3.29) holds according to (3.32) and

the fact that ak ≥
√
1− ε2k > 1/2 (recall that εk < 1/2).

(b) Define ak = dk = 1 and bk = ck = 0. Then Xk ∈ Rn×r
+ \ Sn,r. By straightforward

calculations,
∥XT

k Xk − Ir∥F = 2ε2k.
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Thus (3.30) holds according to (3.32).
(c) Define ak= dk= 1, bk =−ε2k, and ck = 0. Then Xk ∈ Rn×r \ (Rn×r

+ ∪ Sn,r). In addition,
we can calculate that

∥XT
k Xk − Ir∥F =

√
ε4k + (ε2k + ε4k)

2 ≤

√
ε4k +

(
ε2k +

ε2k
4

)2

≤ 2ε2k

and ∥(Xk)−∥F = ε2k. Therefore, (3.31) holds according to (3.32).

Theorem 3.12 extends Theorems 3.9 and 3.10, allowing ∥X−∥F and ∥σ(X)−1∥2 or ∥XTX−Ir∥F

to have different exponents in the error bounds. It specifies the precise range of these exponents
in local and global error bounds for Sn,r+ relative to Rn×r when 1 < r < n. As we will see
from (b) of this theorem and its proof, when 1 < r < n, the error bound (1.2) can hold if and
only if q ≤ 1/2, whereas (1.3) and (1.4) can hold if and only if q = 1/2.

Theorem 3.12. Let q1 and q2 be positive constants. Suppose that 1 < r < n.

(a) The function ρ1(X) := ∥X−∥q1F + ∥σ(X)− 1∥q22 defines a local error bound for Sn,r+ relative
to Rn×r if and only if q1 ≤ 1/2 and q2 ≤ 1/2, but it cannot define a global error bound no
matter what values q1 and q2 take.

(b) The function ρ2(X) := ∥X−∥q1F + ∥XTX − Ir∥q2F defines a local error bound for Sn,r+ relative
to Rn×r if and only if q1 ≤ 1/2 and q2 ≤ 1/2, and it defines a global error bound if and only
if q1 ≤ q2 = 1/2.

Proof. (a) Based on (3.22), it is easy to check that ρ1 defines a local error bound for Sn,r+ relative
to Rn×r if q1 ≤ 1/2 and q2 ≤ 1/2. Conversely, if ρ1 defines a local error bound for Sn,r+ relative
to Rn×r, then q1 ≤ 1/2 and q2 ≤ 1/2 according to (a) and (b) of Proposition 3.11, respectively.

Now we prove that ρ1 cannot define a global error bound. According to what has been
shown above, we assume that q2 ≤ 1/2, as a global error bound must be a local one. Consider
a sequence {Xk} ⊂ Rn×r

+ with ∥Xk∥F → ∞. Then ρ2(Xk) = ∥σ(Xk)− 1∥q22 , and hence

dist(Xk, Sn,r+ )

ρ1(Xk)
≥ ∥σ(Xk)− 1∥2

∥σ(Xk)− 1∥q22
→ ∞.

Thus ρ1 cannot define a global error bound for Sn,r+ relative to Rn×r.
(b) Similar to (a), we can show that ρ2 defines a local error bound for Sn,r+ relative to Rn×r

if and only if q1 ≤ 1/2 and q2 ≤ 1/2. Hence we only need to consider the global error bound.
Suppose that q1 ≤ q2 = 1/2. Let us show that

dist(X, Sn,r+ ) ≤ 5r
3
4

(
∥X−∥q1F + ∥XTX − Ir∥

1
2
F

)
= 5r

3
4 ρ2(X) (3.34)

for all X ∈ Rn×r. If ∥X−∥F ≤ 1, then (3.34) follows from (3.25). When ∥X−∥F > 1,

dist(X, Sn,r+ ) ≤ dist(X, Sn,r) + 2
√
r ≤ r

1
4 ∥XTX − Ir∥

1
2
F + 2

√
r∥X−∥q1F ≤ 5r

3
4 ρ2(X),
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where the second inequality applies Lemma 2.4. Hence ρ2 defines a global error bound for Sn,r+

relative to Rn×r.
Now suppose that ρ2 defines a global error bound for Sn,r+ relative to Rn×r. Then it defines

a local error bound, implying q1 ≤ 1/2 and q2 ≤ 1/2. Similar to the proof for (b) of Theo-
rem 3.5, by considering a sequence {Xk} ⊂ Rn×r

+ such that XT
k Xk = kIr for each k ≥ 1, we can

prove q2 ≥ 1/2. The proof is complete.

Even though the function ρ1 in Theorem 3.12 can only define a local error bound for Sn,r+ rela-
tive to Rn×r, global error bounds can still be established if we add a suitable power of ∥σ(X)−1∥2
or ∥XTX − Ir∥F to ρ1. This will be detailed in Remark 3.14 after we prove the following propo-
sition.

Proposition 3.13. Let ϕ1 and ϕ2 be two nonnegative functions on Rn×r. If there exist positive
constants γ1, γ2, c1 and c2 such that

dist(X, Sn,r+ ) ≤ γ1ϕ1(X) when ϕ1(X) ≤ c1, (3.35)
dist(X, Sn,r) ≤ γ2ϕ2(X) when dist(X, Sn,r) ≥ c2. (3.36)

Then dist(X, Sn,r+ ) ≤ max{γ1, γ2, c−1
1 (2

√
r + c2)}[ϕ1(X) + ϕ2(X)] for all X ∈ Rn×r.

Proof. Fix an X ∈ Rn×r. We only consider the situation where ϕ1(X) > c1, due to (3.35).
Note that

dist(X, Sn,r+ ) ≤ 2
√
r + dist(X, Sn,r). (3.37)

If dist(X, Sn,r) < c2, then (3.37) implies that

dist(X, Sn,r+ ) ≤ c−1
1 (2

√
r + c2)ϕ1(X).

If dist(X, Sn,r) ≥ c2, then (3.36) and (3.37) imply that

dist(X, Sn,r+ ) ≤ max{2c−1
1

√
r, γ2}[ϕ1(X) + ϕ2(X)].

The proof is complete.

Remark 3.14. Suppose that 1 < r < n, 0 < q1 ≤ 1/2, and 0 < q2 ≤ 1/2. According to
Theorem 3.12, Proposition 3.13, and Lemma 2.4, ρ1(X) + ∥σ(X) − 1∥q2 with q ≥ 1 defines a
global error bound for Sn,r+ relative to Rn×r. So does ρ1(X) + ∥XTX − Ir∥qF with q ≥ 1/2.
However, the powers in ρ1 cannot be greater than 1/2 even with the additional terms for the
global error bounds. The same can be said about ρ2.
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3.4 Linear regularity of Rn×r
+ and Sn,r

Before ending this section, we briefly mention that our analysis enables us to characterize the
linear regularity of Rn×r

+ and Sn,r for r ∈ {1, . . . , n}.
A pair of sets A1 and A2 in Rn×r with A1∩A2 ̸= ∅ are said to be boundedly linearly regular

if for any bounded set T ⊂ Rn×r there exists a constant γ such that

dist(X, A1 ∩ A2) ≤ γmax {dist(X, A1), dist(X, A2)} (3.38)

for all X ∈ T , and they are linearly regular if (3.38) holds for all X ∈ Rn×r. Linear regularity
is a fundamental concept in optimization and is closely related to error bounds. See [21] and [5,
Section 8.5] for more details. Note that we can replace the maximum in (3.38) with a summation
without essentially changing the definition of (boundedly) linear regularity.

Proposition 3.15 clarifies whether Rn×r
+ and Sn,r are linearly regular.

Proposition 3.15. The two sets Rn×r
+ and Sn,r are linearly regular if and only if r = 1 or r = n.

Proof. Recall that dist(X, Rn×r
+ ) = ∥X−∥F and dist(X, Sn,r) = ∥σ(X) − 1∥2 for X ∈ Rn×r.

The “if” part of this proposition holds because of the global error bounds in Theorems 3.1
and 3.3. The “only if” part holds because ∥X−∥F + ∥σ(X)− 1∥2 does not define a global error
bound for Sn,r+ relative to Rn×r when 1 < r < n, as we can see from (a) of Theorem 3.12.

Proposition 3.15 remains true if we change “linearly regular” to “boundedly linearly regular”.
The “if” part is weakened after this change, and the other part holds because ∥X−∥F+∥σ(X)−1∥2
does not define a local error bound for Sn,r+ relative to Rn×r when 1 < r < n according to (a) of
Theorem 3.12.

4 Error bounds for the sign-constrained Stiefel manifold

This section will establish the error bounds for Sn,rS based on those already proved for Sn,r+ .

4.1 A special case

First, we consider the special case with

P = {1, . . . , r1} and N = ∅,

where r1 ∈ {1, . . . , r}. Define r2 = r − r1 henceforth. In this case, Sn,rS reduces to

Sn,rr1,+
:=
{
X = (X1, X2) | X1 ∈ Rn×r1

+ , X2 ∈ Rn×r2 , XTX = Ir

}
, (4.1)

with Sn,rr1,+ being Sn,r+ if r1 = r.
Note that the results established in Sections 2 and 3 are still valid when r is replaced with r1

or r2. In the sequel, we will apply these results directly without restating this fact.
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Lemma 4.1. Suppose that r1 < r. Consider matrices Y1 ∈ Rn×r1 and Y2 ∈ Rn×r2. If Y T
1 Y2 = 0,

then there exists a matrix Z that is a projection of Y2 onto Sn,r2 and satisfies Y T
1 Z = 0.

Proof. Define k = n− rank(Y1). Take a matrix V ∈ Sn,k such that range(V ) is the orthogonal
complement of range(Y1) in Rn. Since k ≥ r − r1 = r2, the matrix V TY2 ∈ Rk×r2 has a
polar decomposition UP with U ∈ Sk,r2 and P ∈ Rr2×r2 , the latter being positive semidefinite.
Define Z = V U ∈ Rn×r2 . Then

ZP = V UP = V V TY2 = Y2,

where the last equality holds because range(Y2) ⊂ range(V ) according to Y T
1 Y2 = 0, and V V T

is the orthogonal projection onto range(V ). Besides, ZTZ = UTV TV U = Ir2 . Thus ZP is
a polar decomposition of Y2. Hence Z is a projection of Y2 onto Sn,r2 by Lemma 2.3. More-
over, Y T

1 Z = Y T
1 V U = 0.

Note that Sn,rr1,+ can also be formulated as

Sn,rr1,+ =
{
(X1, X2) | X1 ∈ Sn,r1+ , X2 ∈ Sn,r2 , XT

1 X2 = 0
}
.

This formulation motivates us to develop the following lemma, which provides a global error
bound for Sn,rr1,+ relative to Rn×r.

Lemma 4.2. Suppose that r1 < r. For any matrix X = (X1, X2) with X1 ∈ Rn×r1 and X2 ∈ Rn×r2,
we have

dist(X, Sn,rr1,+) ≤ (2∥X2∥2 + 1) dist(X1, Sn,r1+ ) + dist(X2, Sn,r2) + 2∥XT
1 X2∥F. (4.2)

Proof. Let Y1 be a projection of X1 onto Sn,r1+ and Y2 = (In−Y1Y
T
1 )X2 ∈ Rn×r2 . Then Y T

1 Y2 = 0.
By Lemma 4.1, there exists a matrix Z that is a projection of Y2 onto Sn,r2 with Y T

1 Z = 0. De-
fine X̄ = (Y1, Z), which lies in Sn,rr1,+. Let us estimate ∥X − X̄∥F. It is clear that

∥X − X̄∥F ≤ ∥(X1, X2)− (Y1, Y2)∥F + ∥(Y1, Y2)− (Y1, Z)∥F

≤ ∥X1 − Y1∥F + ∥X2 − Y2∥F + ∥Y2 − Z∥F.

Since ∥Y2−Z∥F = ∥σ(Y2)−1∥2 (Lemma 2.4) and ∥σ(X2)−σ(Y2)∥2 ≤ ∥X2−Y2∥F (Lemma 2.2),
it holds that ∥Y2 − Z∥F ≤ ∥σ(X2)− 1∥2 + ∥X2 − Y2∥F. Therefore,

∥X − X̄∥F ≤ ∥X1 − Y1∥F + ∥σ(X2)− 1∥2 + 2∥X2 − Y2∥F. (4.3)

Meanwhile, recalling that Y2 = (In − Y1Y
T
1 )X2 and Y1 ∈ Sn,r1 , we have

∥X2 − Y2∥F = ∥Y1Y T
1 X2∥F = ∥Y T

1 X2∥F ≤ ∥(Y1 −X1)
TX2∥F + ∥XT

1 X2∥F. (4.4)

Plugging (4.4) into (4.3) while noting ∥(Y1 −X1)
TX2∥F ≤ ∥X1 − Y1∥F∥X2∥2, we obtain

∥X − X̄∥F ≤ (2∥X2∥2 + 1)∥X1 − Y1∥F + ∥σ(X2)− 1∥2 + 2∥XT
1 X2∥F.

This implies inequality (4.2), because ∥X1 − Y1∥F = dist(X1, Sn,r1+ ) by the definition of Y1,
and ∥σ(X2)− 1∥2 = dist(X2, Sn,r2) by Lemma 2.4.
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In light of Lemma 4.2, we can establish error bounds for Sn,rr1,+ using those for Sn,r+ , as will be
done in Propositions 4.3 and 4.4. To this end, it is useful to note for any matrix X = (X1, X2)

that
∥XTX − Ir∥F ≥ max

{
∥XT

1 X1 − Ir1∥F, ∥XT
2 X2 − Ir2∥F,

√
2∥XT

1 X2∥F
}
. (4.5)

Proposition 4.3. For any matrix X ∈ Rn×r with x1 being its first column, we have

dist(X, Sn,r1,+) ≤ 7
√
r
(
∥(x1)−∥2 + ∥XTX − Ir∥F

)
. (4.6)

Moreover, if ∥XTX − Ir∥F < 1/3, then

dist(X, Sn,r1,+) ≤ 7
(
∥(x1)−∥2 + ∥XTX − Ir∥F

)
. (4.7)

Proof. If r = 1, then (4.6) and (4.7) hold because of Theorem 3.1. Hence we suppose that r > 1

in the sequel. We first assume ∥XTX − Ir∥F < 1/3 and establish (4.7). Let X2 be the matrix
containing the last r − 1 columns of X. According to Theorem 3.1 and Lemma 2.4,

dist(x1, Sn,1+ ) ≤ 2∥(x1)−∥2 +
∣∣xT1 x1 − 1

∣∣, (4.8)
dist(X2, Sn,r−1) ≤ ∥XT

2 X2 − Ir−1∥F. (4.9)

Plugging (4.8) and (4.9) into Lemma 4.2 while noting (4.5), we have

dist(X, Sn,r1,+) ≤ (2∥X2∥2 + 1) · 2∥(x1)−∥2 +
[
(2∥X2∥2 + 1) + 1 +

√
2
]
∥XTX − Ir∥F

≤ 7
(
∥(x1)−∥2 + ∥XTX − Ir∥F

)
,

where the second inequality uses the fact that ∥X2∥22 ≤ ∥XTX − Ir∥2 + 1 ≤ 4/3.
To prove (4.6), we now only need to focus on the case with ∥XTX − Ir∥F ≥ 1/3. In this

case,
dist(X, Sn,r1,+) ≤ dist(X, Sn,r) + 2

√
r ≤ ∥XTX − Ir∥F + 6

√
r∥XTX − Ir∥F,

which implies (4.6). The proof is complete.

Proposition 4.4. For any matrix X ∈ Rn×r with X1 being its submatrix containing the first r1
columns, we have

dist(X, Sn,rr1,+) ≤ 15r
3
4

(
∥(X1)−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
. (4.10)

Moreover, if ∥(X1)−∥F + ∥XTX − Ir∥F < 1/(3
√
r), then

dist(X, Sn,rr1,+) ≤ 15
√
r

(
∥(X1)−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
. (4.11)
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Proof. If r1 = r, then (4.10) and (4.11) hold because of Theorem 3.10. Hence we suppose
that r1 < r in the sequel. We first assume ∥(X1)−∥F + ∥XTX − Ir∥F < 1/(3

√
r) and estab-

lish (4.11). Let X2 be the matrix containing the last r2 = r − r1 columns of X. According
to (4.5), our assumption implies

∥(X1)−∥F + ∥XT
1 X1 − Ir1∥F <

1

3
√
r1
, ∥XT

2 X2 − Ir2∥F ≤ 1

3
.

Hence Theorem 3.10 and Lemma 2.4 yield

dist(X1, Sn,r1+ ) ≤ 4
√
r1

(
∥(X1)−∥

1
2
F + ∥XT

1 X1 − Ir1∥
1
2
F

)
, (4.12)

dist(X2, Sn,r2) ≤ ∥XT
2 X2 − Ir2∥F ≤ 1√

3
∥XT

2 X2 − Ir2∥
1
2
F . (4.13)

In addition, inequality (4.5) and our assumption also provide

∥XT
1 X2∥F ≤ 1√

2
∥XTX − Ir∥F ≤ 1√

6
∥XTX − Ir∥

1
2
F . (4.14)

Plugging (4.12)–(4.14) into Lemma 4.2 while noting (4.5), we obtain

dist(X, Sn,rr1,+) ≤
[
4
√
r1(2∥X2∥2 + 1) +

1√
3
+

2√
6

](
∥(X1)−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
≤ 15

√
r

(
∥(X1)−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
,

where the second inequality uses the fact that ∥X2∥22 ≤ ∥XTX − Ir∥2 + 1 ≤ 4/3.
Now we prove (4.10). By the same technique as the proof of (3.28), we have

dist(X, Sn,rr1,+) ≤ 5r
3
4

(
∥(X1)−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
when ∥(X1)−∥F+∥XTX−Ir∥F ≥ 1/(3

√
r). Combining this with (4.11), we conclude that (4.10)

is valid. The proof is complete.

4.2 The general case

We now present the error bounds for Sn,rS , detailed in Theorems 4.5–4.7. Theorems 4.5 and 4.6
can be proved using Proposition 4.3 and Theorem 3.3, respectively. We omit the proofs because
they are essentially the same as that of Theorem 4.7 below.

Theorem 4.5. Suppose that |P|+ |N | = 1. For any matrix X ∈ Rn×r, we have

dist(X, Sn,rS ) ≤ 7
√
r
(
∥(S ◦X)−∥F + ∥XTX − Ir∥F

)
.

Moreover, if ∥XTX − Ir∥F < 1/3, then

dist(X, Sn,rS ) ≤ 7
(
∥(S ◦X)−∥F + ∥XTX − Ir∥F

)
.
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Theorem 4.6. Suppose that |P|+ |N | = n. For any matrix X∈ Rn×n, we have

dist(X, Sn,nS ) ≤ 9n (∥(S ◦X)−∥F + ∥σ(X)− 1∥2) .

Moreover, if ∥(S ◦X)−∥F + ∥σ(X)− 1∥2 < 1/(4
√
n), then

dist(X, Sn,nS ) ≤ 8
√
n (∥(S ◦X)−∥F + ∥σ(X)− 1∥2) .

Theorem 4.7. For any matrix X ∈ Rn×r, we have

dist(X, Sn,rS ) ≤ 15r
3
4

(
∥(S ◦X)−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
. (4.15)

Moreover, if ∥(S ◦X)−∥F + ∥XTX − Ir∥F < 1/(3
√
r), then

dist(X, Sn,rS ) ≤ 15
√
r

(
∥(S ◦X)−∥

1
2
F + ∥XTX − Ir∥

1
2
F

)
. (4.16)

Proof. Let Q = {1, . . . , r} \ (P ∪ N ). With MP , MN , and MQ being the submatrices of Ir

containing the columns indexed by P, N , and Q, respectively, we take the permutation matrix

Π = (MP , MN , MQ) ∈ Rr×r.

In addition, we take the diagonal matrix D ∈ Rr×r with Dj,j = −1 if j ∈ N and Dj,j = 1

otherwise. Define r1 = |P|+ |N |. If r1 = 0, then (4.15) and (4.16) hold because of Lemma 2.4.
Hence we suppose that r1 ≥ 1 in the sequel.

Consider any matrix X ∈ Rn×r. Let Y = XDΠ, and Ȳ be the projection of Y onto Sn,rr1,+

defined in (4.1). Set X̄ = ȲΠTD, which lies in Sn,rS . Then

dist(X, Sn,rS ) ≤ ∥X − X̄∥F = ∥YΠTD − ȲΠTD∥F = ∥Y − Ȳ ∥F.

Invoking Proposition 4.4, we have

∥Y − Ȳ ∥F ≤ 15r
3
4

(
∥(Y1)−∥

1
2
F + ∥Y TY − Ir∥

1
2
F

)
,

where Y1 is the submatrix of Y containing the first r1 columns. It is straightforward to verify
that ∥(Y1)−∥F = ∥(S ◦X)−∥F and ∥Y TY − Ir∥F = ∥XTX − Ir∥F. Hence we obtain (4.15). The
bound (4.16) can be established in a similar way.

5 Exact penalties for optimization on the nonnegative Stiefel manifold

In this section, as an application of the error bounds established in this paper, we consider exact
penalties for optimization problem (1.5). For simplicity, we will focus on the special case with

Sn,rS = Sn,r+ ,
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applying the bounds in Section 3. Essentially the same results can be established in the general
case by exploiting the bounds in Section 4. The exact penalty results only require (local) Lip-
schitz continuity of F , and hence can be applied to nonsmooth optimization, for example, F
involving a group sparse regularization term [27].

The exactness of penalty methods for problem (1.5) with Sn,rS = Sn,r+ has been studied
in [12, 24]. In [12], an error bound is established for Sn,r+ relative to the set

{X ∈ Rn×r
+ : (XTX)j,j = 1, j = 1, . . . , r},

and then the bound is used to analyze a penalty method. However, the error bound in [12]
cannot be used to derive the values of ν and q in (1.2)–(1.4). In [24], the authors consider the
penalty problem (1.6) with q = 1, and show this problem has the same global minimizers as
problem (1.5) if each global optimal solution of (1.5) has no zero rows. Our exact penalty results
only need the Lipschitz continuity of the objective function F in (1.5).

The error bounds (1.2)–(1.4) established in this paper enable us to have the exactness of the
penalized problem

min
{
F (X) + µ

(
∥X−∥q1ℓp + ∥XTX − Ir∥q2ℓp

)
: X ∈ S

}
(5.1)

for solving (1.5) with Sn,rS = Sn,r+ only under the (local) Lipschitz continuity of function F . Here
the set S ⊂ Rn×r is a set that contains Sn,r+ , while the parameters µ, p, q1, and q2 are all positive.
If p = 2 and q1 = q2 = q, then the penalized problem (5.1) reduces to problems (1.6) and (1.7)
when S equals Sn,r and Rn×r

+ , respectively.
During the revision of this paper, a very recent work [17] studied another exact penalty

problem for (1.5) with Sn,rS = Sn,r+ based on an error bound for Sn,r+ relative to the set

{X ∈ Rn×r
+ : (XTX)j,j ≤ 1, j = 1, . . . , r}. (5.2)

Since our error bounds for Sn,r+ are established relative to Rn×r, we allow the feasible set of our
penalty problem to be any set S containing Sn,r+ , whereas the feasible set in [17] can only be the
set (5.2). In addition, with the error bounds established in Section 4, our results can be readily
extended to the case where Sn,rS is a sign-constrained Stiefel manifold other than Sn,r+ , which is
not considered in [17].

Due to the equivalence between norms, it is indeed possible to establish the exactness of (5.1)
when the entry-wise ℓp-norm is changed to other ones. We choose to use the entry-wise ℓp-norm
in (5.1) because it is easy to evaluate.
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5.1 Exactness for Lipschitz continuous objective functions

Theorem 5.1 presents the exactness of problem (5.1) regarding global optimizers when the ob-
jective function F : S → R is an L-Lipschitz continuous function, namely

|F (X)− F (Y )| ≤ L∥X − Y ∥F (5.3)

for all X and Y in S, where L ∈ (0,∞) is a Lipschitz constant of F with respect to the Frobenius
norm. Note that the global Lipschitz continuity of the objective function F is assumed on a set S
containing Sn,r+ . For example, if F (X) = trace(XTATAX) and S = {X ∈ Rn×r : ∥X∥F ≤ γ}
with γ >

√
r, then the global Lipschitz continuity of F holds on S with the Lipschitz con-

stant L = 2γ∥A∥22. Indeed, our theory holds even if F is undefined out of S. The proof of
Theorem 5.1 is standard and we include it in Appendix A for completeness.

Theorem 5.1 (Exact penalty (5.1) with F being Lipschitz continuous). Suppose that S ⊂ Rn×r

is a set containing Sn,r+ , F : S → R is an L-Lipschitz function, and p ≥ 1 is a constant.
If 0 < q ≤ 1/2 and µ > 5Lr

3
4 max

{
1, (nr)

p−2
4p

}
, then

Argmin{F (X) : X∈ Sn,r+ } = Argmin
{
F (X) + µ

(
∥X−∥qℓp + ∥XTX−Ir∥

1
2
ℓp

)
: X∈ S

}
.

Theorem 5.2 presents the exactness of problem (5.1) regarding local minimizers when F is
locally Lipschitz continuous on S, meaning that for any X̄ ∈ S there exists a constant L ∈ (0,∞)

such that (5.3) holds for all X and Y in a certain neighborhood of X̄ in S. We will refer to this L
as a Lipschitz constant of F around X̄. The proof of Theorem 5.2 is also given in Appendix A.

Theorem 5.2 (Exact penalty (5.1) with F being locally Lipschitz continuous). Let S ⊂ Rn×r

be a set containing Sn,r+ , F : S → R be a locally Lipschitz continuous function, and p ≥ 1 be
a constant. Suppose that 0 < q1 ≤ 1/2 and 0 < q2 ≤ 1/2. For any local minimizer X∗ of F

on Sn,r+ , X∗ is also a local minimizer of

min
{
F (X) + µ(∥X−∥q1ℓp + ∥XTX − Ir∥q2ℓp) : X ∈ S

}
(5.4)

for all µ > 4L∗√rmax
{
1, (nr)

q1(p−2)
2p , r

q2(p−2)
p

}
, where L∗ is a Lipschitz constant of F around X∗.

Conversely, if X∗ lies in Sn,r+ and there exists a constant µ such that X∗ is a local minimizer
of (5.4), then X∗ is also a local minimizer of F on Sn,r+ .

Suppose that p ≤ 2. It is noteworthy that the thresholds for µ in Theorems 5.1 and 5.2
are independent of n (even the dependence on r is mild). This is favorable in practice, as r

can be much smaller than n in applications. We also note that the second part of Theorem 5.2
requires X∗ ∈ Sn,r+ . This is indispensable without additional assumptions on the problem struc-
ture (see [5, Remark 9.1.1]).
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5.2 The exponents in the penalty term

When 1 < r < n, the requirements on the exponents of ∥X−∥F and ∥XTX − Ir∥F in Theo-
rems 5.1 and 5.2 cannot be relaxed. This is elaborated in Proposition 5.3, with S = Rn×r being
an example. Similar results can be proved for S = Sn,r and S = Rn×r

+ .

Proposition 5.3. Suppose that 1 < r < n, p ≥ 1, q1 > 0, and q2 > 0. Define the func-
tion ρ(X) = ∥X−∥q1ℓp + ∥XTX − Ir∥q2ℓp for X ∈ Rn×r. There exists a Lipschitz continuous
function F : Rn×r → R such that the following statements hold.

(a) Argmin{F (X) : X ∈ Sn,r+ } = Sn,r+ .

(b) If q1 > 1/2 or q2 ̸= 1/2, then any X∗ ∈ Sn,r+ is not a global minimizer of F + µρ on Rn×r

for any µ > 0.

(c) If q1 > 1/2 or q2 > 1/2, then there exists an X∗ ∈ Sn,r+ that is not a local minimizer
of F + µρ on Rn×r for any µ > 0.

Proof. Define
F (X) = − dist(X, Sn,r+ ) for X ∈ Rn×r.

Then F is Lipschitz continuous on Rn×r. We will justify (a)–(c) one by one.
(a) This holds because F takes a constant value 0 on Sn,r+ .
(b) Assume for contradiction that there exists an X∗ ∈ Sn,r+ such that X∗ is a global minimizer

of F + µ∗ρ on Rn×r for a certain µ∗ > 0. Then

F (X) + µ∗ρ(X) ≥ F (X∗) + µ∗ρ(X∗) = 0 for all X ∈ Rn×r.

By the definition of F , we then have dist(X, Sn,r+ ) ≤ µ∗ρ(X) for all X ∈ Rn×r. Hence ρ defines a
global error bound for Sn,r+ relative to Rn×r, contradicting (b) of Theorem 3.12 (note that ∥ · ∥ℓp
and ∥ · ∥F are equivalent norms).

(c) According to (b) of Theorem 3.12, the function ρ does not define a local error bound
for Sn,r+ relative to Rn×r. Thus there is a sequence {Xk} ⊂ Rn×r such that

∥(Xk)−∥F + ∥XT
k Xk − Ir∥F ≤ k−1, (5.5)

dist(Xk, Sn,r+ ) > kρ(Xk) (5.6)

for each k ≥ 1. According to (5.5), ∥XT
k Xk∥F ≤

√
r+ k−1. Thus {Xk} has a subsequence {Xkℓ}

that converges to a certain point X∗. Using (5.5) again, we have ∥X∗
−∥F+∥(X∗)TX∗−Ir∥F = 0,

and hence X∗ ∈ Sn,r+ . It remains to show that X∗ is not a local minimizer of F+µρ for any µ > 0.
Assume for contradiction that X∗ is such a local minimizer for a certain µ∗ > 0. Then for all
sufficiently large ℓ,

F (Xkℓ) + µ∗ρ(Xkℓ) ≥ F (X∗) + µ∗ρ(X∗) = 0.

By the definition of F , we then have dist(Xkℓ , S
n,r
+ ) ≤ µ∗ρ(Xkℓ), contradicting (5.6). The proof

is complete.
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When r = 1 or r = n, since the exponents of ∥X−∥F and ∥XTX − Ir∥F in the error bounds
can be increased from 1/2 to 1, their exponents in the penalty term of (5.1) can be taken from
a larger range while keeping the exactness of (5.1). This is briefly summarized in Remark 5.4.

Remark 5.4. Suppose that r = 1 or r = n. If F is Lipschitz continuous on S, then we can
establish a result similar to Theorem 5.1 for 0 < q1 ≤ 1 and 1/2 ≤ q2 ≤ 1 based on the error
bound (3.11). When F is only locally Lipschitz continuous, similar to Theorem 5.2, the exactness
of problem (5.1) regarding local minimizers can be established if 0 < q1 ≤ 1 and 0 < q2 ≤ 1.
Proposition 5.3 can also be adapted to the case of r = 1 or r = n. It is also worth noting
that Sn,n+ is precisely the set of n × n permutation matrices, and hence min{F (X) : X ∈ Sn,n+ }
represents optimization problems over permutation matrices.

6 Penalty methods for (1.5)

When Sn,rS = Sn,r+ , problem (1.5) reduces to the nonnegative orthogonal constrained optimization
problem

min
X∈Sn,r

+

F (X). (6.1)

Many papers use penalty methods for problem (6.1) with penalty functions ∥ · ∥2F, ∥ · ∥F or ∥.∥ℓ1
of X− or XTX − Ir, e.g., [1, 18, 28, 30]. However, there is not a satisfactory answer in existing
literature whether the penalty problem using ∥ · ∥2F, ∥.∥F or ∥ · ∥ℓ1 is an exact penalty regarding
local and global minimizers of problem (6.1) for a Lipschitz continuous objective function.

In 2024, the authors of [24] proved that the penalty problem

min
X∈Sn,r

F (X) + µ∥X−∥ℓ1 (6.2)

is a global exact penalty for problem (6.1) under the assumption that any global minimizer
has no zero rows and F satisfies a second-order calmness condition in a neighborhood of any
global minimizer of (6.1). Moreover, they aimed to show that such strong assumption cannot
be removed by Example 3.9 in [24], which is as follows

min
X∈S3,2+

f(X) := −2X1,1 − 2X2,2 −X3,1 −X3,2. (6.3)

The authors of [24] claimed X∗ =

[
1 0 0

0 1 0

]T
is a global minimizer of (6.3), but is not a

solution of the penalty problem

min
X∈S3,2

f(X) + µ∥X−∥ℓ1

for any µ > 0. However, X∗ is not a global minimizer of (6.3), as f(X∗) = −4 > −
√
5−2 = f(X̂),

where X̂ =

[
2/
√
5 0 1/

√
5

0 1 0

]T
. Thus the claim with this example in [24] is wrong.
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In this paper, we give a warning for the penalty problem (6.2) in the case where the objective
function is only Lipschitz continuous. From Proposition 5.3, we know that there is a Lipschitz
continuous function F such that any global (local) minimizer of (6.1) is not a global (local)
minimizer of (6.2) for any µ > 0. On the other hand, from Theorem 5.1 and Theorem 5.2, we
know that

min
X∈Sn,r

F (X) + µ∥X−∥qℓ1

is an exact penalty problem for (6.1) regarding global and local minimizers for µ > 5Lr
3
4

and q ∈ (0, 1/2], where L is a Lipschitz constant of F . Our results provide theoretical warning
and guarantee for penalty methods of nonnegative orthogonal constrained optimization prob-
lem (6.1).

Note that Remark 5.4 can be extended to the case |P| + |N | = 1 or |P| + |N | = n. In
particular, the penalty problem

min
X∈Sn,r

F (X) + µ∥(S ◦X)−∥ℓ1

is an exact penalty problem of (1.5) with Si,1 = 1 and Si,j = 0, for j ̸= 1, i = 1, . . . , n.
Consider the following sparse trace maximization problem [4]

min
X∈Sn,r

−tr(XTATAX) + λ∥X∥ℓ1 , (6.4)

where A ∈ Rm×n is a given matrix. If ATA is a positive or an irreducible nonnegative matrix,
then by the Perron-Frobenius theorem, the largest eigenvalue of ATA is positive and the corre-
sponding eigenvector is positive. Hence, for a dense nonnegative data matrix A, it is interesting
to consider

min
X∈Sn,r

S

−tr(XTATAX) + λ∥T ◦X∥ℓ1 , (6.5)

with Si,1 = 1, Si,j = 0, Ti,1 = 0, Ti,j = 1, for j ̸= 1, i = 1, . . . , n. Since the objective function
of (6.5) is Lipschitz continuous with Lipschitz constant L = 2∥A∥22+ rλ

√
n over Sn,r, our results

show that
min

X∈Sn,r
−tr(XTATAX) + λ∥T ◦X∥ℓ1 + µ∥(S ◦X)−∥ℓ1 (6.6)

is an exact penalty problem of (6.5) with µ > 5Lr
3
4 .

In [4], Chen et. al proposed a ManPG (Manifold Proximal Gradient) algorithm to solve the
following nonsmooth optimization problem

min
X∈Sn,r

F (X) := f(X) + ρ(X),

where f is smooth, ∇f is Lipschitz continuous and ρ is nonsmooth, convex and Lipschitz con-
tinuous. The objective functions in problem (6.4) and problem (6.6) satisfy these conditions.
Numerical results in [4] show that ManPG outperforms some existing algorithms for solving
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problem (6.4). We compare the two models (6.4) and (6.6) for sparse trace maximization prob-
lem by using the code of [4] downloaded from https://github.com/chenshixiang/ManPG, with
the same initial points that are randomly generated by the code. Other algorithms for solving
nonsmooth matrix optimization over Sn,r can be found in [32] and its references. Moreover, we
can also replace the orthogonal constraint by adding a penalty term ∥XTX − Ir∥ℓ1 to (6.6).

6.1 Synthetic simulations

For given m,n, we randomly generated 20 nonnegative matrices and then normalized the columns
by Matlab functions as follows

A = rand(m,n), A = normc(A).

For each randomly generated matrix A, we use ManPG to find an approximate solution X̂ of (6.4)
and (6.6), respectively. The reconstructed matrix and its relative reconstruction error (RRE)
and percentage of explained variance (PEV) [31] by using X̂ are defined by

Â = AX̂(X̂TX̂)−1X̂T, RRE =
∥A− Â∥F
∥A∥F

, PEV =
tr(ÂTÂ)

tr(ATA)
(×100%). (6.7)

In Table 2 and Table 3, we report the average values of RRE and PEV of Â by using the
randomly generated 20 nonnegative matrices A for each m and n to compare models (6.4)
and (6.6) with r = 10. All computed solutions X̂ for calculating RRE and PEV in Table 2 and
Table 3, satisfy

∥X̂TX̂ − Ir∥F ≤ 10−14 and ∥X̂TX̂ − Ir∥F + ∥(S ◦ X̂)−∥ℓ1 ≤ 10−14,

for model (6.4) and model (6.6), respectively.

m = 40, n = 30

λ, µ 0.6, 150 0.6, 170 0.6, 190 0.6, 200 1, 100 1, 110 1, 130
model (6.4) 0.4029 0.4029 0.4029 0.4029 0.4046 0.4046 0.4046
model (6.6) 0.3999 0.3992 0.3988 0.3953 0.4029 0.4008 0.3981

λ = 0.6, µ = 100

m,n 50, 25 50, 50 80, 25 80, 40 80, 80 200, 25 200, 50
model (6.4) 0.3811 0.4427 0.3846 0.4315 0.4652 0.3860 0.4464
model (6.6) 0.3806 0.4409 0.3843 0.4284 0.4636 0.3847 0.4451

Table 2: Comparison on RRE with different (m,n, λ, µ) by randomly generated A
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m = 40, n = 30

λ, µ 0.6, 150 0.6, 170 0.6, 190 0.6, 200 1, 100 1, 110 1, 130
model (6.4) 0.8376 0.8376 0.8376 0.8376 0.8363 0.8363 0.8363
model (6.6) 0.8400 0.8406 0.8410 0.8410 0.8376 0.8391 0.8404

λ = 0.6, µ = 100

m,n 50, 25 50, 50 80, 25 80, 40 80, 80 200, 25 200, 50

model (6.4) 0.8547 0.8040 0.8520 0.8138 0.7836 0.8510 0.8007
model (6.6) 0.8551 0.8055 0.8523 0.8164 0.7850 0.8520 0.8019

Table 3: Comparison on PEV with different (m,n, λ, µ) by randomly generated A

6.2 Numerical results using Yale face dataset

The Yale Face dataset contains 165 GIF format gray scale images of 15 individuals with 11 images
for each subject, and one for each different facial expression or configuration. From http://
www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html, we download the 165× 1024 facial
image matrix Face. The (15 × (i − 1) + t)th row of Face is the tth image of the ith person,
with i = 1, . . . , 15 and t = 1, . . . , 11. Each row of Face defines a 32× 32 nonnegative matrix. We
use the first 55 rows of Face, which include 11 images of each of the first five persons, to get 55
32 × 32 nonnegative matrices and then use Matlab function normc to normalize each of these
matrices.

For each 32 × 32 matrix A, we use ManPG to find an approximate solution X̂ of (6.4)
and (6.6), respectively. We compute the reconstructed matrix Â and its RRE and PEV by using
computed X̂ as (6.7).

From Table 2, Table 3 and Figure 1, we can see that in almost every case, the reconstructed
matrix Â by model (6.6) has lower values RRE and higher values PEV than that computed by
model (6.4). In our numerical experiments, we only restricted the power of the penalty term to
be one, but did not restrict the penalty parameter µ > 5Lr

3
4 .

7 Conclusions

We present the error bounds (1.2)–(1.4) with explicit values of ν and q in Theorems 3.1, 3.3
and 3.10 for Sn,rS = Sn,r+ . Furthermore, we show that these error bounds cannot hold with q > 1/2

when 1 < r < n in Proposition 3.11, and point out that they cannot hold with q > 1

for any r ∈ {1, . . . , n} in Remark 3.4. In Section 4 we present the error bounds (1.2)–(1.4)
with explicit values of ν and q in Theorems 4.5–4.7 for the sign-constrained Stiefel manifold.
The exponent q in the error bounds is 1/2 for any r ∈ {1, . . . , n} and can take the value 1

for |P| + |N | ∈ {1, n}. The new error bounds help us to establish the exactness of penalty
problems (1.6)–(1.8) for problem (1.5). Compared with existing results on error bounds for the
set Sn,r+ and penalty methods for minimization with nonnegative orthogonality constraints, our
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Figure 1: Row i (i = 1, . . . , 5) shows average values of RRE and PEV of the reconstructed matrix Â

using 11 images for the ith person by models (6.4) with λ = 1 and (6.6) with λ = 1, µ = 6, respectively,
for r = 1, . . . , 32.
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results have explicit values of the error bound parameters and penalty parameters, and do not
need any condition other than the (local) Lipschitz continuity of the objective function for the
exact penalty. Moreover, exponents in our error bounds are independent of the dimension of
the underlying space.

A Appendix. Proofs of Theorems 5.1 and 5.2

We first present the following lemma on a simple inequality between the entry-wise ℓp-norm and
the Frobenius norm. Its proof is elementary and hence omitted.

Lemma A.1. For any X ∈ Rn×r and any p ≥ 1,

∥X∥F ≤ max
{
1, (nr)

p−2
2p

}
∥X∥ℓp .

The proofs of Theorems 5.1 and 5.2 are as follows.

Proof of Theorem 5.1. Define the function ρ(X) = ∥X−∥qℓp + ∥XTX − Ir∥
1
2
ℓp

for X ∈ S, and

set ν = 5r
3
4 max

{
1, (nr)

p−2
4p

}
. By (3.34) and Lemma A.1, we have

dist(X, Sn,r+ ) ≤ 5r
3
4

(
∥X−∥qF + ∥XTX − Ir∥

1
2
F

)
≤ νρ(X) for X ∈ S.

For any X ∈ S, setting X̄ to a projection of X onto Sn,r+ , and combining the L-Lipschitz
continuity of F with the above error bound, we have

F (X̄) ≤ F (X) + L dist(X, Sn,r+ ) ≤ F (X) + µρ(X).

This implies that

inf{F (X) : X ∈ Sn,r+ } ≤ inf{F (X) + µρ(X) : X ∈ S}.

Meanwhile, inf{F (X) : X ∈ Sn,r+ } ≥ inf{F (X)+µρ(X) : X ∈ S} as ρ is zero on Sn,r+ ⊂ S. Thus

inf{F (X) : X ∈ Sn,r+ } = inf{F (X) + µρ(X) : X ∈ S}. (A.1)

For any X∗ ∈ Argmin{F (X) : X ∈ Sn,r+ }, we have ρ(X∗) = 0 and

F (X∗) + µρ(X∗) = F (X∗) = inf{F (X) : X ∈ Sn,r+ },

which together with (A.1) ensures X∗ ∈ Argmin{F (X) + µρ(X) : X ∈ S}.
Now take any X∗ ∈ Argmin{F (X) + µρ(X) : X ∈ S}, and let X̄∗ be a projection of X∗

onto Sn,r+ . Then we have

F (X∗) + µρ(X∗) ≤ F (X̄∗) + µρ(X̄∗) = F (X̄∗) ≤ F (X∗) + νLρ(X∗).
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This leads to ρ(X∗) = 0, as µ > νL and ρ(X∗) ≥ 0. Hence X∗ lies in Sn,r+ , and

F (X∗) = F (X∗) + µρ(X∗) = inf{F (X) + µρ(X) : x ∈ S},

which implies that X∗ ∈ Argmin{F (X) : X ∈ Sn,r+ } with the help of (A.1). We complete the
proof.

Proof of Theorem 5.2. Define the function ρ(X) = ∥X−∥q1ℓp + ∥XTX − Ir∥q2ℓp for X ∈ S, and

set ν = 4
√
rmax

{
1, (nr)

q1(p−2)
2p , r

q2(p−2)
p

}
. For any X∈ Sn,r+ and Y ∈ S with ∥Y−X∥F < 1/(6

√
r),

we have

∥Y−∥F + ∥σ(Y )− 1∥2 ≤ ∥Y −X∥F + ∥σ(Y )− σ(X)∥2 ≤ 2∥Y −X∥F <
1

3
√
r
,

where the first inequality is because X− = 0 and σ(X) − 1 = 0, while the second invokes
Lemma 2.2. Hence (3.26) and Lemma A.1 yield

dist(Y, Sn,r+ )

≤ 4
√
r
(
∥Y−∥q1F + ∥Y TY − Ir∥q2F

)
≤ 4

√
r

(
max

{
1, (nr)

q1(p−2)
2p

}
∥Y−∥q1ℓp +max

{
1, (r2)

q2(p−2)
2p

}
∥Y TY − Ir∥q2ℓp

)
≤ νρ(Y ).

Given a local minimizer X∗ of F on Sn,r+ , there exists a δ ∈ (0, 1/(3
√
r)) such that X∗ is a

global minimizer of F on Sn,r+ ∩ B(X∗, δ) and F is L∗-Lipschitz continuous in the same set.
It suffices to demonstrate that X∗ is a global minimizer of F + µρ on S ∩ B(X∗, δ/2) for

all µ > νL∗. Take any point Y ∈ S ∩B(X∗, δ/2), let Ȳ be a projection of Y onto Sn,r+ , and note
that Ȳ lies in B(X∗, δ), which is because

∥Ȳ −X∗∥F ≤ ∥Ȳ − Y ∥F + ∥Y −X∗∥F ≤ ∥X∗ − Y ∥F + ∥Y −X∗∥F < δ.

Then, using the fact that ρ(X∗) = 0, we have

F (X∗) + µρ(X∗) = F (X∗) ≤ F (Ȳ ) ≤ F (Y ) + L∗ dist(Y, Sn,r+ ) ≤ F (Y ) + µρ(Y ),

which is what we desire.
If X∗ is a local minimizer of F + µρ on S, and X∗ happens to lie in Sn,r+ , then

F (X∗) = F (X∗) + µρ(X∗) ≤ F (Y ) + µρ(Y ) = F (Y )

for any Y that is close to X∗ and located in Sn,r+ ⊂ S. Hence X∗ is also a local minimizer of F
on Sn,r+ . We complete the proof.
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