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Abstract

We re-introduce a derivative-free subspace optimization framework originating
from Chapter 5 the Ph.D. thesis [Z. Zhang, On Derivative-Free Optimization Meth-
ods, Ph.D. thesis, Chinese Academy of Sciences, Beijing, 2012] of the author un-
der the supervision of Ya-xiang Yuan. At each iteration, the framework defines
a (low-dimensional) subspace based on an approximate gradient, and then solves
a subproblem in this subspace to generate a new iterate. We sketch the global
convergence and worst-case complexity analysis of the framework, elaborate on its
implementation, and present some numerical results on solving problems with di-
mension as high as 104 using only inaccurate function values.

1 Introduction

Consider the unconstrained problem

min{f(x) : x ∈ Rn},

where f : Rn → R is a smooth yet possibly nonconvex function.
We make the following assumption on f and will not repeat it in the sequel.

Assumption 1.1. The function f : R → R is bounded from below and differentiable, and
its gradient ∇f is Lipschitz continuous on Rn with a Lipschitz constant L ∈ (0,∞).

∗This is only a draft containing quick notes on the main ideas of the work. The final paper
will be very different. The theory is only sketched without detailed proofs. The numerical results may
change as the software package is still under development.

†Email: zaikunzhang@gmail.com.
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We define f∗ = inf{f(x) : x ∈ Rn}. For any sequence {xk} ⊂ Rn, we denote fk = f(xk)

and gk = ∇f(xk) for each k.
We focus on derivative-free optimization (DFO) algorithms for problem (1). Our target

is to solve this problem with n as large as 104. We rely on low-dimensional subspace
techniques to be detailed in the sequel.

2 A subspace framework for optimization

Algorithm 2.1 presents the iterated-subspace optimization framework by Conn et al. [4].
Step 1 of the algorithm chooses a subspace Sk to explore. When dim(Sk) ≡ 1, the
algorithm reduces to a line search method. Step 2 sets xk+1 to an approximate solution
to the subspace subproblem, which is generally much easier to tackle than the original
full-space problem due to the low dimensionality. Despite writing “argmin”, we do not
require this subproblem to have a unique global minimizer.

Algorithm 2.1 Optimization with Iterated-Subspace Technique (OptimIST)
Input: f : Rn → R, x0 ∈ Rn.
For k = 0, 1, 2, . . . , iterate the following.
1. Choose a subspace Sk ⊂ Rn.
2. Calculate xk+1 ≈ argmin{f(x) : x ∈ xk + Sk}.

Algorithm 2.1 is conceptual. For its global convergence, we need to impose some
conditions on the subspaces {Sk} and the subproblem solutions {xk+1}. Proposition 2.1
provides a necessary and sufficient condition when the objective function is convex with
bounded level sets.

Proposition 2.1. Suppose that f is convex with bounded level sets. If Algorithm 2.1
ensures fk+1 ≤ fk for each k ≥ 0, then fk → f∗ if and only if

dist(gk,Sk) → 0 and fk+1 − inf{f(x) : x ∈ xk + Sk} → 0, k → ∞. (2.1)

Proof. (a) The “if” part. Let Pk be the orthogonal projection onto Sk. Then we have
1

2L
∥Pkgk∥2 ≤ fk − inf{f(x) : x ∈ xk + Sk}

= (fk − fk+1) + [fk+1 − inf{f(x) : x ∈ xk + Sk}] → 0,

where fk − fk+1 → 0 due to the monotonicity and boundedness of {fk}. Therefore,
∥gk∥ ≤ dist(gk,Sk) + ∥Pkgk∥ → 0. This implies that fk → f∗ since f is convex with
bounded level sets.
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(b) The “only if” part. If fk → f∗, then ∥gk∥ → 0 by the Lipschitz continuity of ∇f .
Hence dist(gk,Sk) ≤ dist(gk, 0) → 0. Meanwhile,

fk+1 − inf{f(x) : x ∈ xk + Sk} ≤ fk+1 − f∗ → 0.

According to the “if” part of the above proof, even without the convexity or lower-
boundedness of f , condition (2.1) still renders ∥gk∥ → 0; if this condition holds only for k
in an infinite subset of N, then we will have lim infk ∥gk∥ = 0 instead.

Although Proposition 2.1 is mainly of theoretical interest, it suggests a general strategy
to implement Algorithm 2.1:

(a) choose a subspace Sk that contains a vector ĝk ≈ gk;

(b) set xk+1 to a sufficiently accurate solution to min{f(x) : x ∈ xk + Sk}.

The construction of Sk essentially demands an approximate gradient at xk. The calcu-
lation of xk+1 needs more elaboration, especially if the problem is nonconvex. If we can
implement this strategy without using derivatives, then we will get a DFO algorithm.
This will be the focus of Section 3.

3 A subspace framework for derivative-free optimization

Algorithm 3.1 is a specialization of Algorithm 2.1. As we will see, it can be implemented
without using derivatives, providing the framework for a class of subspace DFO algo-
rithms.

Algorithm 3.1 Derivative-free OptimIST
Input: f : Rn → R, x0 ∈ Rn, δ0 ∈ (0,∞), η ∈ (0,∞).
For k = 0, 1, 2, . . . , iterate the following.
1. Generate an approximate gradient ĝk for f at xk.
2. Choose a subspace Sk ⊂ Rn with ĝk ∈ Sk.
3. Calculate xk+1 ≈ argmin{f(x) : x ∈ xk + Sk} so that fk+1 ≤ fk and

fk+1 ≤ max
{
fk − ηδ2k, f(xk − δkĝk/∥ĝk∥)

}
. (3.1)

4. If ∥ĝk∥ ≥ ηδk and fk+1 ≤ fk − ηδ2k, then δk+1 = 2δk ; otherwise, δk+1 = δk/2.

If ĝk = 0, then we define ĝk/∥ĝk∥ = 0 in Step 3 of Algorithm 3.1. The adjustment
of δk in Step 4 resembles that of the trust region radius in [1, 8]. It can be generalized to
update δk in a more refined fashion, but this simple scheme is sufficient for our discussion.
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The key idea of Algorithm 3.1 is simple: use the local information to discover a
subspace and then explore it. In contrast, model-based trust-region methods use the local
information to generate a single trial point in the full space and then move on, which may
not exploit the information sufficiently.

3.1 Global convergence and worst-case complexity
We sketch the theoretical analysis of Algorithm 3.1. To this end, we propose the following
assumption on the approximate gradients {ĝk}. We will elaborate on how to guarantee
this assumption in Subsection 3.2

Assumption 3.1. There exists a constant ζ > 0 such that

∥ĝk − gk∥ ≤ ζδk for each k ≥ 0. (3.2)

Now we explain why Algorithm 3.1 should be globally convergent with provable worst-
case complexity bounds. We will use our proof techniques in [8, 9]. Define

K =
{
k ∈ N : ∥ĝk∥ ≥ ηδk and fk+1 ≤ fk − ηδ2k

}
. (3.3)

Let µ = 2/(L+2η+4ζ). By the triangle inequality and Taylor expansion, we can establishδk ≤ µ∥gk∥,

∥ĝk − gk∥ ≤ ζδk
=⇒

∥ĝk∥ ≥ ηδk,

f(xk − δkĝk/∥ĝk∥) ≤ fk − ηδ2k .
(3.4)

Consequently, whenever δk ≤ µ∥gk∥, we will have k ∈ K according to (3.1) and (3.2), and
hence δk+1 = 2δk. Then, as in the analysis of trust-region methods, we can obtain

δk ≥ ν∥g̃k∥ with ν = min{δ0/∥g0∥, µ/2} and ∥g̃k∥ = min
0≤ℓ≤k

∥gℓ∥.

Hence we establish a lower bound for the reduction achieved by the iterations in K, namely

f(xk)− fk+1 ≥ ηδ2k ≥ ην2∥g̃k∥2 for each k ∈ K. (3.5)

Now let Kϵ = min{k ∈ N : ∥gk∥ ≤ ϵ} for any given ϵ > 0. Based on (3.5), we can
demonstrate that Kϵ = O(ν−2ϵ−2) in the general nonconvex case, Kϵ = O(ν−2ϵ−1) if f
is convex, and Kϵ = O(ν−2| log ϵ|) if f is strongly convex, using the techniques in [8, 9].
These bounds also imply the global convergence of Algorithm 3.1.

Note that the convergence of Algorithm 3.1 is essentially guaranteed by (3.1) and (3.2).
The subspace Sk does not play a direct role in the convergence analysis. However, the
choice of Sk is crucial for the practical performance of the algorithm.
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3.2 Defining the subspace without using derivatives
How to generate the approximate gradient ĝk and ensure (3.2)? We can construct a
model f̂k for f in Rn around xk, and then take ĝk = ∇f̂k(xk). Condition (3.2) holds
if f̂k is a fully linear model [3] of f in a ball centered at xk with a radius proportional
to δk. Such an f̂k can be obtained by linear or (underdetermined) quadratic Lagrange
interpolation of f on a well-poised interpolation set Yk in this ball [3].

As an illustration, consider

Yk = {xk} ∪ {xk + τδke
i : i = 1, ..., n}, (3.6)

with ei being the ith coordinate vector and τ being a positive constant. In this case,
the linear interpolation of f on Yk is equivalent to a forward finite difference, and it will
provide a ĝk satisfying (3.2) with ζ = τ

√
nL/2. Note that the function evaluations over Yk

can be done in parallel.
We may include some previously evaluated points into Yk as long as they do not

deteriorate the geometry of the interpolation set. However, if Algorithm 3.1 converges
fast enough, it is affordable to define Yk like in (3.6) without reusing previous points at
all.

Algorithm 3.1 has the advantage that it converges regardless of the precise definition
of Sk provided that ĝk ∈ Sk. This flexibility allows us to explore and compare different
possibilities of Sk under a unified framework. In general, we will choose Sk according to
the following principles.

(a) Sk should include directions along which f is likely to decrease.

(b) Sk should have a dimension much lower than n.

As examples, a few possible configurations of Sk are listed below.

(a) Conjugate-gradient subspace:

Sk = span{ĝk, xk − xk−1}. (3.7)

This subspace is inspired by Yuan and Stoer’s subspace perspective of conjugate-
gradient methods [18]. It is also studied by [4] and very recently by [19] in the
gradient-based case.

(b) Limited memory quasi-Newton subspace:

Sk = span{ĝk, yk−1, ..., yk−m, sk−1, ..., sk−m}, (3.8)
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where yℓ = ĝℓ+1 − ĝℓ, sℓ = xℓ+1 − xℓ, and m ≥ 1 is an integer much less than n.
When ĝk = gk, this subspace is discussed by Yuan [17], and it is motivated by the
fact that limited memory quasi-Newton methods [13] produce a step in this subspace.

Furthermore, we can augment the subspaces by adding directions reflecting second-
order information of the problem if we can obtain an approximate Hessian Ĥk without
using derivatives. For instance, we can take Ĥk = ∇2f̂k(xk), where f̂k is the model
that generates ĝk, provided that f̂k is nonlinear. Alternatively, we can establish Ĥk

or Ĥ−1
k by quasi-Newton formulae using the vectors {yℓ, sℓ} mentioned earlier. We can

also explore the methods of Hessian approximation proposed by Hare et al. in [11]. Given
an approximate Hessian Ĥk, we can include the following directions into Sk.

(a) Approximate Newton direction, namely a direction d such that Ĥkd ≈ −ĝk.

(b) Approximate negative-curvature directions. It is known that algorithms can benefit
from exploring negative-curvature directions even based on inexact information [6,
12, 16]. If Ĥk is not positive semidefinite, we can take eigenvectors of Ĥk associated
with negative eigenvalues as approximate negative-curvature directions.

Recall that the conjugate-gradient method is known to be inefficient for ill-conditioned
problems. If we consider the conjugate-gradient subspace (3.7), it is particularly impor-
tant to augment the space to include the approximate Newton direction. Otherwise,
Algorithm 3.1 will converge slowly when the problem is ill-conditioned.

3.3 Solving the subspace subproblem without using derivatives
How to calculate xk+1 ≈ argmin{f(x) : x ∈ xk + Sk} and ensure (3.1)? We propose the
following strategy.

(a) Invoke a DFO solver to solve approximately the low-dimensional subproblem

min{f(x) : x ∈ xk + Sk}, (3.9)

obtaining an approximate solution xs
k.

(b) If f(xs
k) ≤ fk−ηδ2k, then set xk+1 = xs

k; otherwise, evaluate f at xg
k = xk−δkĝk/∥ĝk∥,

and set xk+1 to the point with the smallest function value in {xk, x
s
k, x

g
k}.

Note that our strategy does not impose any requirement on the quality of xs
k. In-

deed, the purpose of xs
k is to explore the subspace Sk, and that of xg

k is to provide a
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safeguard when the exploration fails. It is also worth mentioning that problem (3.9) is
an unconstrained derivative-free optimization problem and can be handled by, for exam-
ple, NEWUOA [15]. Take Sk = span{ĝk, xk − xk−1} as an example. Problem (3.9) is
equivalent to

min{f(xk + αĝk + β(xk − xk−1) : α, β ∈ R},

a low-dimensional unconstrained problem.

3.4 Evaluation complexity and scalability
We now examine the complexity of Algorithm 3.1 in terms of function evaluations, pay-
ing particular attention to its dependence on n. Take the nonconvex case as an example,
and suppose that the interpolation set Yk is {xk} ∪ {xk + τδke

i : i = 1, ..., n}. As spec-
ulated above, the worst-case iteration complexity is Kϵ = O(ν−2ϵ−2). If τ = O(n−p),
then ζ = O(n

1
2
−p), and hence ν−1 = O(µ−1) = O(L + 2η + 4ζ) = O(max{1, n 1

2
−p}).

Thus Kϵ = O(n1−2pϵ−2) when p ∈ [0, 1/2]. Since (3.9) is low dimensional and we have no
requirement on xs

k, we can allocate O(1) function evaluations to Step 3 for solving (3.9).
Then the complexity of function evaluations will be Kf

ϵ = O(nKϵ) = O(n2−2pϵ−2). In
particular, Kf

ϵ = O(nϵ−2) if we take p = 1/2. This linear dependence on n ensures the
scalability of Algorithm 3.1 for the targeted problems, where n is in the order of 103 ∼ 104.
In contrast, the evaluation complexity of standard full-space trust-region DFO methods
is O(n2ϵ−2), which is also the case for the RSDFO method of Cartis and Roberts [2].

4 SPRIMA: A package based on OptimIST and PRIMA

4.1 Historical remarks
The thesis [20] implemented Algorithm 3.1 by solving the subproblem (3.9) using Powell’s
NEWUOA [15], leading to the NEWUOAs method. The MATLAB implementation of
NEWUOAs was ported to Module-3 in 2016 by Dr. M. Nyström (Principle Engineer at
the Intel Corporation) and made available in the open-source package CM3.1 It has been
used by Intel in the design of chips, including its flagship product Atom P5900. It also
leads to the BBGP-sDFO method for high-dimensional analog circuit synthesis [10].

We will extend NEWUOAs to develop a new package named SPRIMA, where the
subproblem (3.9) is solved by the solvers in PRIMA [21].

1https://github.com/modula3/cm3/blob/master/caltech-other/newuoa/src/NewUOAs.m3
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4.2 Numerical experiments
Here we present some numerical experiments based on NEWUOAs.2

4.2.1 Comparing NEWUOAs and NEWUOA on moderate-dimensional prob-
lems

We tested NEWUOAs and NEWUOA on 98 unconstrained CUTEst [7] problems listed
in Table 1. All the problems have changeable dimensions, which was to n = 200 in this
experiment. We provided the solvers with only the first 3 significant digits of the function
values, intending to test the robustness of the algorithms. Figure 1 shows the performance
profiles [5, 14] generated with the tolerance of the convergence test set to 10−1 and 10−3.
It is evident that NEWUOAs outperformed NEWUOA in this experiment.

arglina arglina4 arglinb arglinc argtrig arwhead
bdqrtic bdqrticp bdvalue biggsb1 brownal broydn3d
broydn7d brybnd chainwoo chebquad chnrosnb chpowellb
chpowells chrosen cosine cragglvy cube curly10
curly20 curly30 dixmaane dixmaanf dixmaang dixmaanh
dixmaani dixmaanj dixmaank dixmaanl dixmaanm dixmaann
dixmaano dixmaanp dqrtic edensch eg2 engval1
errinros expsum extrosnb exttet firose fletcbv2
fletcbv3 fletchcr fminsrf2 freuroth genbrown genhumps
genrose indef integreq liarwhd lilifun3 lilifun4
morebv morebvl ncb20 ncb20b noncvxu2 noncvxun
nondia nondquar penalty1 penalty2 penalty3 penalty3p
powellsg power rosenbrock sbrybnd sbrybndl schmvett
scosine scosinel serose sinquad sparsine sparsqur
sphrpts spmsrtls srosenbr stmod tointgss tointtrig
tquartic tridia trigsabs trigssqs trirose1 trirose2
vardim woods

Table 1: 98 CUTEst problems with changeable dimensions

2https://github.com/newuoas/newuoas
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Figure 1: Performance Profiles of NEWUOAs and NEWUOA
(function values were truncated to 3 significant digits; dimension n = 200)

4.2.2 Comparing NEWUOAs and fminunc on large-dimensional problems

To illustrate the scalability of NEWUOAs, we compared it with fminunc on 12 problems
with 104 variables. The latter is a solver provided by MATLAB’s Optimization Toolbox,
and it uses a BFGS method based on finite-difference gradients when derivatives are
unavailable. We did not test NEWUOA in this case because it cannot scale to such
high dimensions. In this experiment, we still provided the solvers with only the first 3
significant digits. The results are summarized in Table 2. Indeed, fminunc always stopped
prematurely on these problems, while NEWUOAs provided reasonable solutions.

Although we have no intention to claim that NEWUOAs can solve 104-dimensional
problems in general, the results in Table 2 demonstrate its potential for high-dimensional
problems. This illustrates the power of the subspace strategy in scaling up DFO methods.
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Table 2: Comparison between NEWUOAs and fminunc on 104-dimensional problems
(function values were truncated to 3 significant digits )

NEWUOAs fminunc
Problem f(x0) f(xfin) NF f(xfin) NF
arwhead 2.99E+04 0.00E+00 90331 2.99E+04 170017
brybnd 3.60E+05 4.50E−15 370895 1.61E+04 270027
chrosen 1.99E+05 8.80E−14 851736 1.99E+05 140014

cragglvy 5.49E+06 3.40E+03 110483 5.49E+06 140014
dixmaane 7.36E+04 1.02E+00 170658 1.23E+04 90018

engval1 5.89E+05 1.10E+04 230880 5.89E+05 140014
eg2 8.41E+03 −9.99E+03 110353 −9.62E+03 160016

liarwhd 5.85E+06 7.89E−14 130464 3.71E+05 240024
nondia 1.01E+08 1.97E+00 90242 1.01E+08 90009
power 3.33E+11 1.64E+06 270951 3.33E+11 20002

sparsqur 1.40E+07 1.12E−18 410989 3.98E+06 90009
woods 4.79E+07 1.97E+04 90339 4.79E+07 120012

x0: starting point; xfin: final iterate; NF: number of function evaluations

5 Conclusions and future work

TODO.
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