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1. Derivative-free optimization

The problem

In this talk, to make things simple, we consider
unconstrained optimization problem

min
x∈Rn

f(x).

Most of the current methods depend on derivatives.
In many real-world problems, the derivatives are unavailable.
Suppose that

f is smooth, but the derivatives are unavailable;
the function evaluation of f is expensive.
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1. Derivative-free optimization

Importance and difficulty

.

......

We consider optimization without derivatives one of
the most important, open, and challenging areas in
computational science and engineering, and one with
enormous practical potential.

— A. R. Conn, K. Scheinberg, L. N. Vicente
Introduction to Derivative-Free Optimization
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1. Derivative-free optimization

The objective

Develop optimization algorithms that

do not use derivatives;
use function evaluations as less as possible.
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1. Derivative-free optimization

Existing methods

Two main classes of rigorous methods in DFO:

directional methods, like direct search;
model-based methods, like trust-region methods.
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1. Derivative-free optimization

A. R. Conn, K. Scheinberg,
and L. N. Vicente,
Introduction to
Derivative-Free Optimization,
MOS-SIAM Series on
Optimization, SIAM,
Philadelphia, 2009
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1. Derivative-free optimization

Interpolation-based trust-region methods

Trust region technique:
Minimize Model Function
Subject to Trust Region.
Model construction:
Objective Function Interplolation−−−−−−−−−−→ Model Function.
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1. Derivative-free optimization

Underdetermined interpolation

Quadratic interpolation:

Q(x) = f(x), x ∈ I.

A linear system with degree of freedom (n + 1)(n + 2)/2.
What if |I| < (n + 1)(n + 2)/2 (for example, |I| = O(n))?
Regularization:

min
Q∈Q

F (Q)

s.t. Q(x) = f(x), x ∈ I.
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2. A framework of subspace algorithms
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2. A framework of subspace algorithms

Why subspace?

To solve large-scale problems (~1000).

Not easy —

quadratic-model-based methods:
in principle, the degree of freedom of a full quadratic model is
(n + 1)(n + 2)/2;
in practice, we hope the algorithms finish the job with number
of function evaluations of O(n).

difficult to exploit the structure.
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2. A framework of subspace algorithms

Basic idea

Solve a difficult problem by solving a sequence of easy problems;
solve a large problem by solving a sequence of small problems.

ZHANG (UC) DFO Algorithm with Subspace Techniques July 29, 2013 14 / 36



2. A framework of subspace algorithms

Basic idea

Solve a difficult problem by solving a sequence of easy problems;

solve a large problem by solving a sequence of small problems.

ZHANG (UC) DFO Algorithm with Subspace Techniques July 29, 2013 14 / 36



2. A framework of subspace algorithms

Basic idea

Solve a difficult problem by solving a sequence of easy problems;
solve a large problem by solving a sequence of small problems.

ZHANG (UC) DFO Algorithm with Subspace Techniques July 29, 2013 14 / 36



2. A framework of subspace algorithms

Subspace techniques in optimization

Yuan, Ya-xiang. Subspace techniques for nonlinear
optimization. Some topics in industrial and applied
mathematics 8 (2007): 206-218.

Gould, Nick, A. Sartenaer, and Ph L. Toint. On
iterated-subspace minimization methods for nonlinear
optimization. Rutherford Appleton Laboratory, 1994.

Coordinate-search …
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2. A framework of subspace algorithms

A general framework

.Algorithm 2.1..

......

Step 1. Initialize. Pick the starting point x1. k := 1.
Step 2. Define the Subspace. Pick a subspace Sk of Rn.
Step 3. Solve the Subproblem. Solve the subspace subproblem

min
d∈Sk

f(xk + d)

exactly or approximately, obtaining dk.
Step 4. Update the Iterate. If f(xk + dk) < f(xk), then

xk+1 := xk + dk; else xk+1 := xk. k := k + 1. Goto Step 2.
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2. A framework of subspace algorithms

Convergence analysis

.

......

Global convergence
R-linear convergence rate
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Convergence analysis

.

......

Global convergence
R-linear convergence rate ~ww

.

......

dist(∇f(xk),Sk) is small enough ⇐= Sk ∋ g̃k ≈ ∇f(xk)

dk is exact enough ⇐= existing derivative-free algorithms
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3. NEWUOAs

3. A practical subspace algorithm: NEWUOAs

ZHANG (UC) DFO Algorithm with Subspace Techniques July 29, 2013 22 / 36



3. NEWUOAs

NEWUOAs

Sk = span{g̃k, sk−1}.

Interpolation set Ik =⇒ Quadratic model Qk =⇒ Approximate
gradient g̃k = ∇Qk(xk).

Subproblem solver: NEWUOA.

The parameter RHOEND controls the precision of dk.
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3. NEWUOAs

The convergence of NEWUOAs

Global convergence:

diam(Ik) −→ 0, RHOEND −→ 0.

R-linear convergence rate:

diam(Ik)
R-linear−−−−→ 0, RHOEND R-linear−−−−→ 0.
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3. NEWUOAs

Preconditioning techniques of NEWUOAs

Second order information?
Quadratic model Qk =⇒ Approximate Hessian ∇2Qk =⇒
Precondition.
Sk = {Akg̃k, g̃k, sk−1}.

∇2Qk positive definite, Ak = [∇2Qk]
−1;

∇2Qk not positive definite, Ak = ?
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4. Numerical results

4. Numerical results
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4. Numerical results

Relatively large problems (n=50, 100, 150, 200)
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Fig 1 : Numerical comparison between NEWUOA and NEWUOAs (τ = 10−2)
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4. Numerical results

Relatively large problems (n=50, 100, 150, 200, cont.)
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Fig 2 : Numerical comparison between NEWUOA and NEWUOAs (τ = 10−4)
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4. Numerical results

Relatively large problems (n=50, 100, 150, 200, cont.)
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Fig 3 : Numerical comparison between NEWUOA and NEWUOAs (τ = 10−6)
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4. Numerical results

Relatively large problems (n=50, 100, 150, 200, cont.)
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Fig 4 : Numerical comparison between NEWUOA and NEWUOAs (τ = 10−8)
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4. Numerical results

Large problems

Tab 1 : The performance of NEWUOAs on some 2000-dimensional problems

fstart fbest #f CPU (s)
ARWHEAD 5.997000E+03 0.000000E+00 16095 6.42
BRYBND 7.200000E+04 6.486038E−09 50000 26.09
DIXMAANE 1.471453E+04 1.000000E+00 36264 21.12
DIXMAANF 2.734976E+04 1.000000E+00 36384 31.07
DIXMAANG 5.069653E+04 1.000000E+00 36393 22.72
DQRTIC 6.376035E+15 1.214880E−38 40854 14.70
GENHUMPS 5.122260E+07 1.624799E−26 36467 23.54
LIARWHD 1.170000E+06 2.428807E−24 16208 6.73
POWER 2.668667E+09 1.423292E−11 20130 19.19
SPARSQUR 5.627812E+05 6.381755E−30 16209 9.87

ZHANG (UC) DFO Algorithm with Subspace Techniques July 29, 2013 31 / 36



5. Concluding remarks

5. Concluding remarks

ZHANG (UC) DFO Algorithm with Subspace Techniques July 29, 2013 32 / 36
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Happy birthday!

Happy birthday, Grandpa!
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