A Derivative-Free Optimization Algorithm with Low-Dimensional Subspace Techniques for Large-Scale Problems

> ZHANG, Zaikun University of Coimbra www.zhangzk.net

July 29, 2013 — ICCOPT, Lisbon

- A framework of subspace algorithms
- A practical subspace algorithm: NEWUOAs
- A Numerical results
- Concluding remarks

• The problem

In this talk, to make things simple, we consider unconstrained optimization problem

 $\min_{x\in\mathbb{R}^n}f(x).$

• The problem

In this talk, to make things simple, we consider unconstrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x).$$

• Most of the current methods depend on derivatives.

• The problem

$$\min_{x \in \mathbb{R}^n} f(x).$$

- Most of the current methods depend on derivatives.
- In many real-world problems, the derivatives are unavailable.

• The problem

$$\min_{x \in \mathbb{R}^n} f(x).$$

- Most of the current methods depend on derivatives.
- In many real-world problems, the derivatives are unavailable.
- Suppose that

• The problem

$$\min_{x \in \mathbb{R}^n} f(x).$$

- Most of the current methods depend on derivatives.
- In many real-world problems, the derivatives are unavailable.
- Suppose that
 - f is smooth, but the derivatives are unavailable;

• The problem

$$\min_{x \in \mathbb{R}^n} f(x).$$

- Most of the current methods depend on derivatives.
- In many real-world problems, the derivatives are unavailable.
- Suppose that
 - $\bullet~f$ is smooth, but the derivatives are unavailable;
 - the function evaluation of f is expensive.

• Importance and difficulty

We consider optimization without derivatives one of the most important, open, and challenging areas in computational science and engineering, and one with enormous practical potential.

> — A. R. Conn, K. Scheinberg, L. N. Vicente Introduction to Derivative-Free Optimization

Importance and difficulty

We consider optimization without derivatives one of the most important, open, and challenging areas in computational science and engineering, and one with enormous practical potential.

> — A. R. Conn, K. Scheinberg, L. N. Vicente Introduction to Derivative-Free Optimization

• The objective

Develop optimization algorithms that

• The objective

Develop optimization algorithms that

• do not use derivatives;

• The objective

Develop optimization algorithms that

- do not use derivatives;
- use function evaluations as less as possible.

• Existing methods

• Two main classes of rigorous methods in DFO:

• Existing methods

- Two main classes of rigorous methods in DFO:
 - directional methods, like direct search;

• Existing methods

- Two main classes of rigorous methods in DFO:
 - directional methods, like direct search;
 - model-based methods, like trust-region methods.

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, MOS-SIAM Series on Optimization, SIAM, Philadelphia, 2009

Interpolation-based trust-region methods

Interpolation-based trust-region methods

 Trust region technique: Minimize Model Function Subject to Trust Region.

Interpolation-based trust-region methods

- Trust region technique: Minimize Model Function Subject to Trust Region.
- Model construction: Objective Function $\xrightarrow{\text{Interplolation}}$ Model Function.

Underdetermined interpolation

• Underdetermined interpolation

• Quadratic interpolation:

$$Q(x) = f(x), \quad x \in \mathcal{I}.$$

• A linear system with degree of freedom (n+1)(n+2)/2.

• Underdetermined interpolation

• Quadratic interpolation:

$$Q(x) = f(x), \quad x \in \mathcal{I}.$$

- A linear system with degree of freedom (n+1)(n+2)/2.
- What if $|\mathcal{I}| < (n+1)(n+2)/2$ (for example, $|\mathcal{I}| = O(n)$)?

• Underdetermined interpolation

• Quadratic interpolation:

$$Q(x) = f(x), \quad x \in \mathcal{I}.$$

- A linear system with degree of freedom (n+1)(n+2)/2.
- What if $|\mathcal{I}| < (n+1)(n+2)/2$ (for example, $|\mathcal{I}| = O(n)$)?
- Regularization:

$$\min_{Q \in \mathcal{Q}} \mathscr{F}(Q)$$
 s.t. $Q(x) = f(x), \quad x \in \mathcal{I}.$

2. A framework of subspace algorithms

• Why subspace?

To solve large-scale problems (~ 1000).

• Why subspace?

To solve large-scale problems (~ 1000).

Not easy —

• Why subspace?

To solve large-scale problems (~ 1000).

Not easy —

- quadratic-model-based methods:
 - in principle, the degree of freedom of a full quadratic model is (n+1)(n+2)/2;
 - in practice, we hope the algorithms finish the job with number of function evaluations of O(n).

• Why subspace?

To solve large-scale problems (~ 1000).

Not easy —

- quadratic-model-based methods:
 - in principle, the degree of freedom of a full quadratic model is (n+1)(n+2)/2;
 - in practice, we hope the algorithms finish the job with number of function evaluations of O(n).
- difficult to exploit the structure.

Basic idea

• Basic idea

• Solve a difficult problem by solving a sequence of easy problems;

• Basic idea

- Solve a difficult problem by solving a sequence of easy problems;
- solve a large problem by solving a sequence of small problems.

• Subspace techniques in optimization

- Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some topics in industrial and applied mathematics 8 (2007): 206-218.
- Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace minimization methods for nonlinear optimization. Rutherford Appleton Laboratory, 1994.

• Subspace techniques in optimization

- Yuan, Ya-xiang. Subspace techniques for nonlinear optimization. Some topics in industrial and applied mathematics 8 (2007): 206-218.
- Gould, Nick, A. Sartenaer, and Ph L. Toint. On iterated-subspace minimization methods for nonlinear optimization. Rutherford Appleton Laboratory, 1994.
- Coordinate-search ...

• A general framework

Algorithm 2.1
• A general framework

Algorithm 2.1

Step 1. <u>Initialize</u>. Pick the starting point x_1 . k := 1.

• A general framework

Algorithm 2.1

Step 1. <u>Initialize</u>. Pick the starting point x_1 . k := 1.

Step 2. Define the Subspace. Pick a subspace S_k of \mathbb{R}^n .

• A general framework

Algorithm 2.1

- Step 1. <u>Initialize</u>. Pick the starting point x_1 . k := 1.
- Step 2. Define the Subspace. Pick a subspace S_k of \mathbb{R}^n .
- Step 3. Solve the Subproblem. Solve the subspace subproblem

$$\min_{d\in\mathcal{S}_k} f(x_k+d)$$

exactly or approximately, obtaining d_k .

• A general framework

Algorithm 2.1

- Step 1. <u>Initialize</u>. Pick the starting point x_1 . k := 1.
- Step 2. Define the Subspace. Pick a subspace S_k of \mathbb{R}^n .
- Step 3. Solve the Subproblem. Solve the subspace subproblem

$$\min_{d\in\mathcal{S}_k} f(x_k+d)$$

exactly or approximately, obtaining d_k .

Step 4. Update the Iterate. If $f(x_k + d_k) < f(x_k)$, then

 $x_{k+1} := x_k + d_k$; else $x_{k+1} := x_k$. k := k + 1. Goto Step 2.

• A general framework

Algorithm 2.1

- Step 1. <u>Initialize</u>. Pick the starting point x_1 . k := 1.
- Step 2. Define the Subspace. Pick a subspace S_k of \mathbb{R}^n .
- Step 3. Solve the Subproblem. Solve the subspace subproblem

$$\min_{d\in\mathcal{S}_k} f(x_k+d)$$

exactly or approximately, obtaining d_k .

Step 4. Update the Iterate. If $f(x_k + d_k) < f(x_k)$, then

 $x_{k+1} := x_k + d_k$; else $x_{k+1} := x_k$. k := k + 1. Goto Step 2.

Convergence analysis

- Global convergence
- R-linear convergence rate

Convergence analysis

- Global convergence
- R-linear convergence rate

• d_k is exact enough

Convergence analysis

- Global convergence
- R-linear convergence rate

• d_k is exact enough

Convergence analysis

- Global convergence
- R-linear convergence rate

• d_k is exact enough \Leftarrow existing derivative-free algorithms

3. A practical subspace algorithm: NEWUOAs

ZHANG (UC)

DFO Algorithm with Subspace Techniques

July 29, 2013 22 / 36

• NEWUOAs

•
$$\mathcal{S}_k = \operatorname{span}\{\tilde{g}_k, s_{k-1}\}.$$

•
$$\mathcal{S}_k = \operatorname{span}\{\tilde{g}_k, s_{k-1}\}.$$

• Interpolation set $\mathcal{I}_k \Longrightarrow \mathsf{Quadratic} \mod Q_k \Longrightarrow \mathsf{Approximate}$ gradient $\tilde{g}_k = \nabla Q_k(x_k)$.

•
$$\mathcal{S}_k = \operatorname{span}\{\tilde{g}_k, s_{k-1}\}.$$

- Interpolation set $\mathcal{I}_k \Longrightarrow$ Quadratic model $Q_k \Longrightarrow$ Approximate gradient $\tilde{g}_k = \nabla Q_k(x_k)$.
- Subproblem solver: NEWUOA.

•
$$\mathcal{S}_k = \operatorname{span}\{\tilde{g}_k, s_{k-1}\}.$$

- Interpolation set *I_k* ⇒ Quadratic model *Q_k* ⇒ Approximate gradient *ğ_k* = ∇*Q_k(x_k*).
- Subproblem solver: NEWUOA.
 - The parameter RHOEND controls the precision of d_k .

• Global convergence:

- Global convergence:
 - diam $(\mathcal{I}_k) \longrightarrow 0$, RHOEND $\longrightarrow 0$.

- Global convergence:
 - diam $(\mathcal{I}_k) \longrightarrow 0$, RHOEND $\longrightarrow 0$.
- R-linear convergence rate:

- Global convergence:
 - diam $(\mathcal{I}_k) \longrightarrow 0$, RHOEND $\longrightarrow 0$.
- R-linear convergence rate:

• diam $(\mathcal{I}_k) \xrightarrow{\mathsf{R-linear}} 0$, RHOEND $\xrightarrow{\mathsf{R-linear}} 0$.

• Preconditioning techniques of NEWUOAs

• Preconditioning techniques of NEWUOAs

• Second order information?

• Preconditioning techniques of NEWUOAs

- Second order information?
- Quadratic model $Q_k \Longrightarrow$ Approximate Hessian $\nabla^2 Q_k \Longrightarrow$ Precondition.

• Preconditioning techniques of NEWUOAs

- Second order information?
- Quadratic model $Q_k \Longrightarrow$ Approximate Hessian $\nabla^2 Q_k \Longrightarrow$ Precondition.

•
$$\mathcal{S}_k = \{A_k \tilde{g}_k, \tilde{g}_k, s_{k-1}\}.$$

• $\nabla^2 Q_k$ positive definite, $A_k = [\nabla^2 Q_k]^{-1}$;

• Preconditioning techniques of NEWUOAs

- Second order information?
- Quadratic model $Q_k \Longrightarrow$ Approximate Hessian $\nabla^2 Q_k \Longrightarrow$ Precondition.

•
$$\mathcal{S}_k = \{A_k \tilde{g}_k, \tilde{g}_k, s_{k-1}\}.$$

- $\nabla^2 Q_k$ positive definite, $A_k = [\nabla^2 Q_k]^{-1}$;
- $\nabla^2 Q_k$ not positive definite, $A_k = ?$

• Relatively large problems (n=50, 100, 150, 200)

Fig 1 : Numerical comparison between NEWUOA and NEWUOAs $(au=10^{-2})$

ZHANG (UC)

• Relatively large problems (n=50, 100, 150, 200, cont.)

Fig 2 : Numerical comparison between <code>NEWUOA</code> and <code>NEWUOAs</code> ($au=10^{-4}$)

ZHANG (UC)

DFO Algorithm with Subspace Techniques

• Relatively large problems (n=50, 100, 150, 200, cont.)

Fig 3 : Numerical comparison between NEWUOA and NEWUOAs ($au = 10^{-6}$)

ZHANG (UC)

DFO Algorithm with Subspace Techniques

• Relatively large problems (n=50, 100, 150, 200, cont.)

Fig 4 : Numerical comparison between NEWUOA and NEWUOAs ($au=10^{-8}$)

ZHANG (UC)

DFO Algorithm with Subspace Techniques

Large problems

Tab 1 : The performance of NEWUOAs on some 2000-dimensional problems

	fstart	$f_{\sf best}$	#f	CPU (s)
ARWHEAD	5.997000E+03	0.000000E+00	16095	6.42
BRYBND	7.200000E+04	6.486038E-09	50000	26.09
DIXMAANE	1.471453E+04	1.000000E+00	36264	21.12
DIXMAANF	2.734976E+04	1.000000E+00	36384	31.07
DIXMAANG	5.069653E+04	1.000000E+00	36393	22.72
DQRTIC	6.376035E+15	1.214880E-38	40854	14.70
GENHUMPS	5.122260E+07	1.624799E-26	36467	23.54
LIARWHD	1.170000E+06	2.428807E-24	16208	6.73
POWER	2.668667E+09	1.423292E-11	20130	19.19
SPARSQUR	5.627812E+05	6.381755E-30	16209	9.87

5. Concluding remarks

5. Concluding remarks

5. Concluding remarks

5. Concluding remarks

• A framework of subspace algorithms

- A framework of subspace algorithms
- A practical subspace algorithm NEWUOAs

- A framework of subspace algorithms
- A practical subspace algorithm NEWUOAs
- Preconditioning techniques
- A framework of subspace algorithms
- A practical subspace algorithm NEWUOAs
- Preconditioning techniques
- New strategy for defining the subspace

- A framework of subspace algorithms
- A practical subspace algorithm NEWUOAs
- Preconditioning techniques
- New strategy for defining the subspace
- Extend to constrained problems

- A framework of subspace algorithms
- A practical subspace algorithm NEWUOAs
- Preconditioning techniques
- New strategy for defining the subspace
- Extend to constrained problems
- General preconditioning techniques

Obrigado! 谢谢! zhang@mat.uc.pt www.zhangzk.net

Obrigado! 谢谢! zhang@mat.uc.pt www.zhangzk.net

Happy birthday!

Happy birthday, Grandpa!

