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Problem setting

Unconstrained derivative-free optimization (DFO)

min
x∈Rn

f(x)

f : Rn → R

f is bounded from below and differentiable

∇f is Lipschitz continuous but unavailable

Many real-world problems: derivatives are expensive or unreliable.

S. Gratton, P. Laloyaux, and A. Sartenaer, “Derivative-free Optimization for

Large-scale Nonlinear Data Assimilation Problems”, Quarterly Journal of the

Royal Meteorological Society, 140: 943-957, 2014
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Derivative-free optimization: What is desirable?

Algorithms that

do not use derivatives, and

use function evaluations as few as possible.

And convergence theory of the algorithms.
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Existing methods

Two main classes of rigorous methods in DFO

Directional methods, like direct search (GPS, GSS, MADS ...)

Model-based methods, like trust region methods (DFO, NEWUOA,
CONDER, BOOSTER, ORBIT ...)
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Direct search — an example

A classical direct search algorithm (Coordinate Search)

Input Starting point x and initial step size α.
Repeat Check whether there exists d ∈ {±e1,±e2, . . . ,±en} such that

f(x+ αd) < f(x)− α2/2.

If yes, x := x+ αd and possibly expand α; if no, contract α.

Contour of an objective function
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Direct search — a general framework

Choose: x0, α0, γ ∈ [1,∞), θ ∈ (0, 1), and a forcing function ρ.

For k = 0, 1, 2, . . .

Polling: Select a polling set of directions, and seek dk ∈ Dk:

f(xk + αkdk) < f(xk)− ρ(αk).

If dk is found, the iteration is successful. Otherwise, it is unsuccessful.

Update:

xk+1 =

{
xk + αkdk if successful

xk if unsuccessful,

αk+1 =

{
γαk if successful

θαk if unsuccessful.
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More ...

A forcing function ρ is a positive and monotonically nondecreasing
function such that

lim
α↓0

ρ(α)

α
= 0.

For simplicity, in this talk:

ρ(α) =
α2

2

α0 = 1 (initial stepsize)

γ = 2 (increasing factor)

θ =
1

2
(decreasing factor)
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Traditional polling set: PSS

Positive spanning set (PSS):

D = {d1, . . . , dm} is a PSS if it spans Rn positively:

Rn =

{
m∑
i=1

µidi : µi ≥ 0 (1 ≤ i ≤ m)

}
.

Example:

D⊕ = {e1, . . . , en,−e1, . . . ,−en}

∃ d ∈ D that ‘approximates’ −∇f(xk), meaning d⊤[−∇f(xk)] > 0.
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Direct search with PSS: Global convergence

Global convergence (Torczon 1997, Kolda, Lewis, and Torczon 2003)

If {Dk} is a sequence of PSSs with ‘uniformly good quality’, then

lim infk→∞∥∇f(xk)∥ = 0.

9/33



The quality of a PSS: Cosine measure

Cosine measure: the ability of D to ‘approximate’ directions in Rn.

cm(D) = min
0̸=v∈Rn

max
d∈D

d⊤v

∥d∥∥v∥
.

Cosine of the largest angle ‘between D and the vectors in Rn’.

For each v ∈ Rn, there exists d ∈ D such that

d⊤v ≥ cm(D)∥d∥∥v∥.

We are particularly interested in the case with v = −∇f(xk).

Example:

cm(D⊕) =
1√
n
.
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Direct search with PSS: Worst case complexity (WCC)

Worst case complexity for iterations (Vicente 2013)

If
cm(Dk) ≥ κ > 0,

then
min0≤ℓ≤k ∥∇f(xℓ)∥ ≤ O(κ−1k−1/2),

∥∇f(xk)∥ is driven under ϵ within O(κ−2ϵ−2) iterations.

Worst case complexity for function evalautions (Vicente 2013)

If
cm(Dk) ≥ κ > 0 and |Dk| ≤ m,

then ∥∇f(xk)∥ is driven under ϵ within O(mκ−2ϵ−2) function evalations.

In particular, if Dk ≡ D⊕, then the complexity bound is O(n2ϵ−2).

Question: How to choose Dk to minimize the WCC for function evalations?
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The optimal PSS?

To find the PSS that minimizes the bound O(mκ−2ϵ−2), we have to solve

min
D∈D

mκ−2

s.t. cm(D) ≥ κ,

|D| ≤ m,

where D is the set consisting of all the PSSs in Rn.

It is equivalent to solve

min
D∈D

|D|
cm2(D)

.
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Cosine measure and sphere covering

Suppose that D is a PSS consisting of unit vectors. Recall that

cm(D) = min
∥v∥=1

max
d∈D

d⊤v.

Lemma

Let C(d, ϕ) be the spherical cap centered at d with geodesic radius ϕ, and
cm(D) = κ, then Sn−1 ⊆

∪
d∈D C(d, arccosκ).

ϕ

x

Spherical cap C(d, ϕ)

d1d3

d2

d4

π
4

S1 ⊆
∪

d∈D⊕
C(d, π/4)

13/33



A sphere covering problem

Solving

min
D∈D

|D|
cm2(D)

is equivalent to solve

min
|D|

cos2 ϕ

s.t. Sn−1 ⊆
∪
d∈D

C(d, ϕ).

One possible approch is to study

min
|D|=m

ϕ

s.t. Sn−1 ⊆
∪
d∈D

C(d, ϕ).

=⇒ What is the most ‘economical’ covering of Sn−1 by m identical caps?

14/33



A sphere covering problem

Solving

min
D∈D

|D|
cm2(D)

is equivalent to solve

min
|D|

cos2 ϕ

s.t. Sn−1 ⊆
∪
d∈D

C(d, ϕ).

One possible approch is to study

min
|D|=m

ϕ

s.t. Sn−1 ⊆
∪
d∈D

C(d, ϕ).

=⇒ What is the most ‘economical’ covering of Sn−1 by m identical caps?

14/33



A sphere covering problem

Good news: Sphere covering is a classical topic of Discrete Geometry.

Bad news: The most ‘economical’ covering is still unknown.

Worse news: It is unknown even when m = 2n (n ≥ 5).

When m = 2n, it is reasonable to conjecture that D⊕ gives the most
economical covering, but the proof is non-trivial even for n = 3.

K. Böröczky, Jr. Finite Packing and Covering, Cambridge University
Press, New York, 2004

K. Böröczky, Jr. and G. Wintsche, “Covering the sphere by equal
spherical balls”, In Discrete and Computational Geometry, volume 25 of
Algorithms and Combinatorics, pages 235–251. Springer Berlin, 2003

Hopeless?
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A recent bound

Lemma (Tikhomirov 2014)

Any covering of Sn−1 by m ≥ n+ 1 spherical caps of geodesic radius ϕ
satisfies

cosϕ ≤ ζ
√

n−1 log(n−1m)

for some universal constant ζ > 0.

Corollary (Dodangeh, Vicente, Zhang 2014)

If Sn−1 ⊆
∪

d∈D C(d, ϕ), then

|D|
cos2 ϕ

≥ ζ−2n2.

For each PSS D in Rn,

|D|
cm2(D)

≥ ζ−2n2.
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The optimality of D⊕

Worst case complexity for function evalautions (Recalling)

If
cm(Dk) ≥ κ > 0 and |Dk| ≤ m,

then ∥∇f(xk)∥ is driven under ϵ within O(mκ−2ϵ−2) function evalations.

In particular, if Dk ≡ D⊕, then the complexity bound is O(n2ϵ−2).

Theorem (Dodangeh, Vicente, Zhang 2014)

In the theorem above, it holds that

mκ−2 ≥ ζ−2n2.

Hence the complexity bound achives its optimal order when Dk ≡ D⊕.

Is it possible to do even better than D⊕? Yes, by randomization.
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A competition

Relative performance: PSS v.s. Random polling sets (n = 40)

D⊕ 2n n+ 1 n/4 2 1

arglina 3.42 10.30 6.01 1.88 1.00 –
arglinb 20.50 7.38 2.81 1.85 1.00 2.04

broydn3d 4.33 6.54 3.59 1.28 1.00 –
dqrtic 7.16 9.10 4.56 1.70 1.00 –

engval1 10.53 11.90 6.48 2.08 1.00 2.08
freuroth 56.00 1.00 1.67 1.67 1.00 4.00
integreq 16.04 12.44 6.76 2.04 1.00 –

nondquar 6.90 7.56 4.23 1.87 1.00 –
sinquad – 1.65 2.01 1.00 1.55 –
vardim 1.00 1.80 2.40 1.80 1.80 4.30

Solution accuracy was 10−3. Averages were taken over 10 independent runs.

18/33



Direct search — recalling

Choose: x0, α0, γ ∈ (1,∞), θ ∈ (0, 1), and a forcing function ρ.

For k = 0, 1, 2, . . .

Polling: Select a polling set of directions, and seek dk ∈ Dk:

f(xk + αkdk) < f(xk)− ρ(αk).

If dk is found, the iteration is successful. Otherwise, it is unsuccessful.

Update:

xk+1 =

{
xk + αkdk if successful

xk if unsuccessful,

αk+1 =

{
γαk if successful

θαk if unsuccessful.
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Using random polling sets: What will happen?

−∇f(xk)
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Using random polling sets: What will happen?

−∇f(xk)

≤ n random polling directions

certainly not a PSS

Yet Dk is ‘good’ in some probabilistic sense ...
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What do we mean by ‘good’?

If derivatives were available, it would have been sufficient to require

max
d∈D

−d⊤∇f(xk)

∥d∥∥∇f(xk)∥
≥ κ.

Define

cm(D, v) = max
d∈D

d⊤v

∥d∥∥v∥
.

Then cm(D,−∇f(xk)) ≥ κ would have been enough.

But derivatives are not available!
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Random variables v.s. realizations

From now on, we suppose that the polling directions are not defined

deterministically but taken at random from the unit sphere Sn−1.

Distinguish random variables from realizations

Iterate Polling set

Random variables Xk Dk

Realizations xk Dk
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What to do?

Global convergence:{
lim inf
k→∞

∥∇f(Xk)∥ > 0

}
⊂ E

with P (E) = 0.

Worst case complexity:{
min
0≤ℓ≤k

∥∇f(Xk)∥ > ϵ

}
⊂ Ek,ϵ,

with P(Ek,ϵ) being ‘low’ when k is ‘large’.

It remains to find E and Ek,ϵ ...
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Global convergence: An intuitive lemma

Let Zk be the indicator function of
{
cm
(
Dk,−∇f(Xk)

)
≥ κ

}
, and

p0 =
ln θ

ln(γ−1θ)
=

1

2
.

Without imposing any assumption on the probabilistic behavior of {Dk}:

Lemma{
lim inf
k→∞

∥∇f(Xk)∥ > 0
}

⊂

{ ∞∑
k=0

(Zk − p0) = −∞

}
(≡ E).

Meaning:

If convergence does not hold, the ‘frequency’ of {Zk}k≥0 is ‘less than p0’.
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Worst case complexity: Another intuitive lemma

Without imposing any assumption on the probabilistic behavior of {Dk}:

Lemma

{
max
0≤ℓ≤k

∥∇f(Xk)∥ > ϵ

}
⊂

{
k−1∑
ℓ=0

Zℓ ≤
[
(ν + 1)2β

2κ2ϵ2k
+ p0

]
k

}
(≡ Ek,ϵ).

β < ∞ is an upper bound for
∑∞

k=0 ρ(αk) (existence guaranteed).

ν < ∞ is a Lipshitz constant of ∇f in Rn.

Meaning:

If {∥∇f(X0)∥}0≤ℓ≤k are all above ϵ, the ‘frequency’ of {Zℓ}0≤ℓ≤k−1 is

‘not more than p0 +O(ϵ−2k−1)’.
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What assumptions to impose?

Until now, no assumption is imposed on the probabilistic behavior of {Dk}.

Definition

The sequence {Dk} is p-probabilistically κ-descent if, for each k ≥ 0,

P
(
cm(Dk,−∇f(Xk)) ≥ κ | D0, . . . ,Dk−1

)
≥ p.
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Global convergence

Lemma

If {Dk} is p0-probabilistically κ-descent, then
{∑k−1

ℓ=0 (Zℓ − p0)
}
is a

submartingale, and

P

( ∞∑
k=0

(Zk − p0) = −∞

)
= 0.

Theorem

If {Dk} is p0-probabilistically κ-descent, then

P
(
lim inf
k→∞

∥∇f(Xk)∥ = 0
)

= 1.
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Global rate

Lemma (Chernoff bound)

Suppose that {Dk} is p-probabilistically κ-descent and λ ∈ (0, p). Then

P

(
k−1∑
ℓ=0

Zℓ ≤ λk

)
≤ exp

[
−(p− λ)2

2p
k

]
.

Theorem

Suppose that {Dk} is p-probabilistically κ-descent with p > p0. Then

P

(
min
0≤ℓ≤k

∥∇f(Xℓ)∥ ≤

[
(ν + 1)β

1
2

(p− p0)
1
2κ

]
1√
k

)
≥ 1− exp

[
−(p− p0)

2

8p
k

]
.

=⇒ O(κ−1k−1/2) decaying rate for gradient holds with overwhelmingly
high probability, matching the deterministic case (Vicente 2013).
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Practical probabilistic descent sets

For each k ≥ 0,

Dk is independent of the previous iterations,

Dk is a set {d1, . . . , dm} of independent random vectors uniformly

distributed on the unit sphere.
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Practical probabilistic descent sets

{Dk} generated in this way is probabilistically descent.

Proposition

Given τ ∈ [0,
√
n], {Dk} is p-probabilistically (τ/

√
n)-descent with

p = 1−
(
1

2
+

τ√
2π

)m

.

For instance,

m = 2

τ =
1

2

 =⇒ p >
1

2
= p0 (κ = 1/(2

√
n)).
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Practical probabilistic descent sets: WCC bounds

Plugging m = 2 and κ = 1/(2
√
n) into the global rate, one obtains

WCC for function evaluations

Let Kf
ϵ be the least number of function evaluations that is sufficient to

drive ∥∇f(Xk)∥ under ϵ. Then

P
(
Kf

ϵ ≤ 2

⌈
4(ν + 1)2β

p− p0
(nϵ−2)

⌉)
≥ 1− exp

[
−β(p− p0)(ν + 1)2

2p
(nϵ−2)

]
.

=⇒ O(nϵ−2) with overwhelmingly high probability.

It is better than the optimal order of the deterministic case O(n2ϵ−2)
(Dodangeh, Vicente, Zhang 2014).

No matter how big n is, using 2 random directions is sufficient to
guaranttee the convergence of direct search.
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Concluding remarks

Deterministic direct search

The optimal order of the worst case complexity for function
evaluations is O(n2ϵ−2).

The optimal order is achived when using D⊕ as the polling set.

M. Dodangeh, L. N. Vicente, Z. Zhang, On the optimal order of worst
case complexity of direct search, to appear in Optim. Lett.

Randomized direct search

No matter how big n is, using 2 random directions is sufficient to
guaranttee the convergence of direct search.

The worst case complexity for function evaluations is O(nϵ−2),
better than the optimal order in the deterministic case.

S. Gratton, C. W. Royer, L. N. Vicente, Z. Zhang, “Direct search based
on probabilistic descent”, SIAM J. Optim., 25(3): 1515-1541, 2015

What was ‘unexpected’?
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For taking back home: A seemingly easy open problem

Open problem

Prove that D⊕ gives the most ‘economical’ covering of the unit sphere, or
equivalently, for any 2n unit vectors {d1, d2, . . . , d2n} ⊂ Rn, there exists a
unit vector v ∈ Rn such that

max
1≤i≤2n

d⊤v ≤ 1√
n
.

References:

K. Böröczky, Jr. Finite Packing and Covering, Cambridge University Press,
New York, 2004
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