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Why optimize a function without using derivatives?

I started to write computer programs in Fortran at Harwell in 1962.
. . . after moving to Cambridge in 1976 . . . I became a consultant for
IMSL. One product they received from me was the TOLMIN package
for optimization . . . which requires first derivatives . . . Their customers,
however, prefer methods that are without derivatives, so IMSL forced
my software to employ difference approximations . . . I was not happy
. . . Thus there was strong motivation to try to construct some better
algorithms.

— M. J. D. Powell
A view of algorithms for optimization without derivatives, 2007
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Because it is important and cool

- Why work on derivative-free optimization?
- Because the problems are important and cool.

— J. E. Dennis, Jr.
Reasons to study derivative-free algorithms, 2013, Toulouse, France
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Derivative-free optimization (DFO)

Derivative-free optimization (DFO)

Minimize a function f using function values but not derivatives.

A typical case: f is a black box without an explicit formula.

fx f(x)

Various applications

S. Gratton, P. Laloyaux, A. Sartenaer, ‘Derivative-free optimization for
large-scale nonlinear data assimilation problems’, 2014

S. Wild, J. Sarich, N. Schunck, ‘Derivative-free optimization for

parameter estimation in computational nuclear physics’, 2015
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Existing methods

Many derivative-free methods have been developed:

Trust region methods: BC-DFO, DFO, NEWUOA, . . .

Direct-search type methods: BFO, GPS, NOMAD, . . .
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How large is large?

Perhaps foremost among the limitations of derivative-free methods is
that, on a serial machine, it is usually not reasonable to try and optimize
problems with more than a few tens of variables, although some of the
most recent techniques (NEWUOA) can handle unconstrained problems
in hundreds of variables.

— A. R. Conn, K. Scheinberg, L. N. Vicente
Introduction to Derivative-Free Optimization, 2007
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How large is large?

LINCOA is not suitable for very large numbers of variables because no at-
tention is given to any sparsity. A few calculations with 1000 variables,
however, have been run successfully overnight, and the performance of
LINCOA is satisfactory usually for small numbers of variables.

— M. J. D. Powell
Comments to LINCOA, December 2013
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Subspace techniques in optimization

N. Gould, A. Sartenaer, Ph. L. Toint. ‘On iterated-subspace
minimization methods for nonlinear optimization’, 1994.

Y. Yuan, ‘Subspace techniques for nonlinear optimization’, 2007

Block coordinate descent

. . .
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A framework of subspace algorithms

Algorithm
Step 1. Pick the starting point x0. k := 0.

Step 2. Pick a subspace Sk of Rn.

Step 3. Solve the subspace subproblem

min
d∈Sk

f(xk + d)

exactly or approximately, obtaining dk.

Step 4. xk+1 := xk + dk and k := k + 1. Goto Step 2.
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Convergence

Theorem

Suppose that

dist(∇f(xk), Sk) is sufficiently small, and

dk is sufficiently exact,

then the subspace algorithm will converge (sufficiently fast).

All we need is

a good model of f around xk, and

a good solver for mind∈Sk
f(xk + d).

We do not need derivatives.
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A practical derivative-free subspace algorithm: NEWUOAs

The subspace:
Sk = span{−gk, dk−1},

where
gk = ∇mk(xk),

mk being the model at xk defined by the methodology of NEWUOA.

Ref: Y. Yuan, J. Stoer, ‘A Subspace Study on Conjugate Gradient
Algorithms’, 1995

The subspace solver: NEWUOA.

NEWUOAs = NEWUOA + subspace
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The name of the game

From: Mike Powell <M.J.D.Powell@damtp.cam.ac.uk>

Date: 2012-05-22 17:16 GMT+08:00

Subject: Re: Paper on Sobolev Seminorm

To: M.J.D.Powell@damtp.cam.ac.uk, zhangzk@lsec.cc.ac.cn

Cc: yyx@lsec.cc.ac.cn, zaikunzhang@gmail.com

Dear Zaikun,

...Congratulations on finishing your thesis. ...It is

often difficult to choose a name for a new algorithm,

and NEWUOAs does have some advantages -- there is no

need for my permission. ...

With best wishes,

Grandpa.
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‘Perfect’ problems

Test ptoblems

We take 50 unconstrained problems from the CUTEr set

These problems are smooth and bounded from below

The dimensions of these problems are changable

Performance measures

We use the Performance Profile and Data Profile
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‘Perfect’ problems
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Figure: NEWUOA, NEWUOAs, and fminunc (n = 200, τ = 10−2)
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Figure: NEWUOA, NEWUOAs, and fminunc (n = 200, τ = 10−4)
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Figure: NEWUOA, NEWUOAs, and fminunc (n = 200, τ = 10−6)
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Noisy problems

We still want to solve the previous 50 CUTEr problems.

However, for each objective function f , we have access only to

fe(x) = f(x)(1 + e), with e ∼ N(0, σ2).

In our experiment, σ = 10−3.
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Noisy problems
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Figure: NEWUOA, NEWUOAs, and fminunc (n = 100, τ = 10−1)
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Nonsmooth problems

We minimize
F (x) = f(x) + λ∥x∥1

for each f of the previous 50 CUTEr problems.

In our experiment, λ = 10.
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Nonsmooth problems
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Large problems

Table: The performance of NEWUOAs on some 20000-dimensional problems

fstart fbest #f/n CPU (s)

ARWHEAD 5.999700E+04 0.000000E+00 8.0 32.1

CHROSEN 3.999800E+10 1.100760E−10 14.1 78.1

SPARSQUR 5.627812E+07 2.352091E−28 8.0 63.2
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Conclusion

Use your information to choose a subspace before doing optimization.
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